Streamflow Prediction with Time-Lag-Informed Random Forest and Its Performance Compared to SWAT in Diverse Catchments
This study introduces a time-lag-informed Random Forest (RF) framework for streamflow time-series prediction across diverse catchments and compares its results against SWAT predictions. We found strong evidence of RF’s better performance by adding historical flows and time-lags for meteorological va...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2024-10, Vol.16 (19), p.2805 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study introduces a time-lag-informed Random Forest (RF) framework for streamflow time-series prediction across diverse catchments and compares its results against SWAT predictions. We found strong evidence of RF’s better performance by adding historical flows and time-lags for meteorological values over using only actual meteorological values. On a daily scale, RF demonstrated robust performance (Nash–Sutcliffe efficiency [NSE] > 0.5), whereas SWAT generally yielded unsatisfactory results (NSE < 0.5) and tended to overestimate daily streamflow by up to 27% (PBIAS). However, SWAT provided better monthly predictions, particularly in catchments with irregular flow patterns. Although both models faced challenges in predicting peak flows in snow-influenced catchments, RF outperformed SWAT in an arid catchment. RF also exhibited a notable advantage over SWAT in terms of computational efficiency. Overall, RF is a good choice for daily predictions with limited data, whereas SWAT is preferable for monthly predictions and understanding hydrological processes in depth. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w16192805 |