A test for LISA foreground Gaussianity and stationarity. I. Galactic white-dwarf binaries
Upcoming space-based gravitational-wave detectors will be sensitive to millions and resolve tens of thousands of stellar-mass binary systems at mHz frequencies. The vast majority of these will be double white dwarfs in our Galaxy. The greatest part will remain unresolved, forming an incoherent stoch...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Upcoming space-based gravitational-wave detectors will be sensitive to millions and resolve tens of thousands of stellar-mass binary systems at mHz frequencies. The vast majority of these will be double white dwarfs in our Galaxy. The greatest part will remain unresolved, forming an incoherent stochastic foreground signal. Using state-of-the-art Galactic models for the formation and evolution of binary white dwarfs and accurate LISA simulated signals, we introduce a test for foreground Gaussianity and stationarity. We explain the former with a new analytical modulation induced by the LISA constellation motion and the intrinsic anisotropy of the source distribution. By demodulating the foreground signal, we reveal a deviation from Gaussianity in the 2-10 mHz frequency band. Our finding is crucial to design faithful data models, i.e. unbiased likelihoods for both individual sources and astrophysical foregrounds parameter estimation, and ultimately for an accurate interpretation of the LISA data. |
---|---|
ISSN: | 2331-8422 |