Principal Component Analysis in the Graph Frequency Domain
We propose a novel principal component analysis in the graph frequency domain for dimension reduction of multivariate data residing on graphs. The proposed method not only effectively reduces the dimensionality of multivariate graph signals, but also provides a closed-form reconstruction of the orig...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a novel principal component analysis in the graph frequency domain for dimension reduction of multivariate data residing on graphs. The proposed method not only effectively reduces the dimensionality of multivariate graph signals, but also provides a closed-form reconstruction of the original data. In addition, we investigate several propositions related to principal components and the reconstruction errors, and introduce a graph spectral envelope that aids in identifying common graph frequencies in multivariate graph signals. We demonstrate the validity of the proposed method through a simulation study and further analyze the boarding and alighting patterns of Seoul Metropolitan Subway passengers using the proposed method. |
---|---|
ISSN: | 2331-8422 |