Anomalously extended Floquet prethermal lifetimes and applications to long-time quantum sensing
Floquet prethermalization is observed in periodically driven quantum many-body systems where the system avoids heating and maintains a stable, non-equilibrium state, for extended periods. Here we introduce a novel quantum control method using off-resonance and short-angle excitation to significantly...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Floquet prethermalization is observed in periodically driven quantum many-body systems where the system avoids heating and maintains a stable, non-equilibrium state, for extended periods. Here we introduce a novel quantum control method using off-resonance and short-angle excitation to significantly extend Floquet prethermal lifetimes. This is demonstrated on randomly positioned, dipolar-coupled, 13C nuclear spins in diamond, but the methodology is broadly applicable. We achieve a lifetime $T_2'~800 s at 100 K while tracking the transition to the prethermal state quasi-continuously. This corresponds to a >533,000-fold extension over the bare spin lifetime without prethermalization, and constitutes a new record both in terms of absolute lifetime as well as the total number of Floquet pulses applied (here exceeding 7 million). Using Laplace inversion, we develop a new form of noise spectroscopy that provides insights into the origin of the lifetime extension. Finally, we demonstrate applications of these extended lifetimes in long-time, reinitialization-free quantum sensing of time-varying magnetic fields continuously for ~10 minutes at room temperature. Our work facilitates new opportunities for stabilizing driven quantum systems through Floquet control, and opens novel applications for continuously interrogated, long-time responsive quantum sensors. |
---|---|
ISSN: | 2331-8422 |