Pushing Patterning Limits of Drop‐On‐Demand Inkjet Printing with Cspbbr3/PDMS Nanoparticles

Patterning is crucial for advancing perovskite materials into color conversion micro‐display applications, but achieving inkjet‐printed patterns with high performance and precision remains challenging. Here, novel CsPbBr3/PDMS nanoparticles as a promising candidate is proposed for achieving precise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2024-10, Vol.18 (10), p.n/a
Hauptverfasser: Cai, Junhu, Lai, Wenzong, Chen, Yu, Zhang, Xiang, Zheng, Yaqian, Zhang, Wenyan, Chen, Xiaogang, Ye, Yun, Xu, Sheng, Yan, Qun, Guo, Tailiang, Chen, Enguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Patterning is crucial for advancing perovskite materials into color conversion micro‐display applications, but achieving inkjet‐printed patterns with high performance and precision remains challenging. Here, novel CsPbBr3/PDMS nanoparticles as a promising candidate is proposed for achieving precise and perfect inkjet printing patterns. The as‐prepared nanoparticles ensure exceeding brightness, exceptional stability, uniform fluorescence emission, and high resolution reaching the highest performance of drop‐on‐demand inkjet printing. Specifically, the performance and stability of CsPbBr3/PDMS nanoparticles are enhanced through a two‐step optimization involving dodecyl benzene sulfonic acid (DBSA) ligand modification and polydimethylsiloxane (PDMS) in situ coating, resulting in the highest photoluminescence quantum yield (PLQY) of 92% among CsPbBr3/polymer core‐shell composites so far. The branched structure of DBSA and the PDMS shell provide steric hindrance and effectively prevent agglomeration during storage or patterning. The viscous PDMS coating inhibits the coffee ring effect, not only leading to excellent near‐unity uniform emission but also promoting the formation of smaller and more elaborate droplets, increasing the printing resolution by up to surprisingly 300%. Importantly, the impeccably displayed, high‐resolution patterns formed by versatile CsPbBr3/PDMS nanoparticles have demonstrated significant potential for high pixel density Micro‐LED displays, enabling efficient and stable color conversion. In this work, a multifunctional perovskite material, named CsPbBr3/PDMS nanoparticles, is innovatively proposed for achieving precise and perfect inkjet printing patterns. Importantly, the impeccably displayed, high‐resolution patterns have demonstrated significant potential for application in the emerging Micro‐LED displays featuring comparably sized micropixels, thereby resulting in efficient and stable color conversion.
ISSN:1863-8880
1863-8899
DOI:10.1002/lpor.202400298