Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite‐Free Solid‐State Lithium Metal Battery
This work demonstrates a novel polymerization‐derived polymer electrolyte consisting of methyl methacrylate, lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate. The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism. LiTFSI plays...
Gespeichert in:
Veröffentlicht in: | Energy & environmental materials (Hoboken, N.J.) N.J.), 2024-11, Vol.7 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Energy & environmental materials (Hoboken, N.J.) |
container_volume | 7 |
creator | Ye, Xue Liang, Jianneng Du, Baorong Li, Yongliang Ren, Xiangzhong Wu, Dazhuan Ouyang, Xiaoping Zhang, Qianling Liu, Jianhong |
description | This work demonstrates a novel polymerization‐derived polymer electrolyte consisting of methyl methacrylate, lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate. The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism. LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte. Normally, lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer, a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization. However, the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant. The as‐prepared poly‐methyl methacrylate‐based polymer electrolyte has a high ionic conductivity (1.19 × 10−3 S cm−1), a wide electrochemical stability window (5 V vs Li+/Li), and a high Li ion transference number (tLi+) of 0.74 at room temperature (RT). Moreover, this polymerization‐derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode, which enabled the Li symmetric cell to achieve a long‐term cycling performance at 0.2 mAh cm−2 for 2800 h. The LiFePO4 battery with polymerization‐derived polymer electrolyte‐modified Li metal anode shows a capacity retention of 91.17% after 800 cycles at 0.5 C. This work provides a facile and accessible approach to manufacturing poly‐methyl methacrylate‐based polymerization‐derived polymer electrolyte and shows great potential as an interphase in Li metal batteries.
Polymerizing monomers/oligomers using Li salts as the initiators has significant meaning in avoiding the introduction of impurities and improves interface stability between the electrodes and polymerization‐derived polymer electrolyte (PDPE). Herein, a unique method for polymerizing MMA monomer at RT using LiTFSI and FEC is described. The poly‐MMA presents excellent electrochemical performances to assist Li metal/PDPE interface formed a stable artificial polymer‐inorganic SEI. |
doi_str_mv | 10.1002/eem2.12751 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3116178722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116178722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2961-cc76facd80298a5f9d773f3f398cc30c9feffbdb6dec3980de3f097cdd7df0533</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhQdRsGg3PkHAnVBNMs6ks9TaaqFFoboeMsmNTckkNZMi48pHcOvr-SRmWgVXchf377sn4STJCcHnBGN6AVDTc0JZRvaSHs1YNsBplu__qQ-TftOscIQxSS9J0Us-Zzos9aZGC24CGrm60lbbZzQxG-cdhGVrwAIacV85ywOgqdVBx6JB8-12m7jwrem2D860NXj9xoN2Fo0tr0wndwNWeh3g6_1j4gHQwhktY7MI3dXvH6IUN-iahwC-PU4OFDcN9H_yUfI0GT-O7gaz-9vp6Go2ELTIyUAIlisu5BDTYsgzVUjGUhWjGAqRYlEoUKqSVS5BxBmWkCpcMCElkwpnaXqUnO501969bKAJ5cptvI1PlikhOWFDRmmkznaU8K5pPKhy7XXNfVsSXHbul5375db9CJMd_KoNtP-Q5Xg8p7ubb82hjN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116178722</pqid></control><display><type>article</type><title>Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite‐Free Solid‐State Lithium Metal Battery</title><source>Wiley Free Content</source><source>Wiley Online Library Open Access</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ye, Xue ; Liang, Jianneng ; Du, Baorong ; Li, Yongliang ; Ren, Xiangzhong ; Wu, Dazhuan ; Ouyang, Xiaoping ; Zhang, Qianling ; Liu, Jianhong</creator><creatorcontrib>Ye, Xue ; Liang, Jianneng ; Du, Baorong ; Li, Yongliang ; Ren, Xiangzhong ; Wu, Dazhuan ; Ouyang, Xiaoping ; Zhang, Qianling ; Liu, Jianhong</creatorcontrib><description>This work demonstrates a novel polymerization‐derived polymer electrolyte consisting of methyl methacrylate, lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate. The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism. LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte. Normally, lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer, a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization. However, the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant. The as‐prepared poly‐methyl methacrylate‐based polymer electrolyte has a high ionic conductivity (1.19 × 10−3 S cm−1), a wide electrochemical stability window (5 V vs Li+/Li), and a high Li ion transference number (tLi+) of 0.74 at room temperature (RT). Moreover, this polymerization‐derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode, which enabled the Li symmetric cell to achieve a long‐term cycling performance at 0.2 mAh cm−2 for 2800 h. The LiFePO4 battery with polymerization‐derived polymer electrolyte‐modified Li metal anode shows a capacity retention of 91.17% after 800 cycles at 0.5 C. This work provides a facile and accessible approach to manufacturing poly‐methyl methacrylate‐based polymerization‐derived polymer electrolyte and shows great potential as an interphase in Li metal batteries.
Polymerizing monomers/oligomers using Li salts as the initiators has significant meaning in avoiding the introduction of impurities and improves interface stability between the electrodes and polymerization‐derived polymer electrolyte (PDPE). Herein, a unique method for polymerizing MMA monomer at RT using LiTFSI and FEC is described. The poly‐MMA presents excellent electrochemical performances to assist Li metal/PDPE interface formed a stable artificial polymer‐inorganic SEI.</description><identifier>ISSN: 2575-0356</identifier><identifier>EISSN: 2575-0356</identifier><identifier>DOI: 10.1002/eem2.12751</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anodic protection ; Dielectric constant ; Electrochemistry ; Electrolytes ; in situ polymerization ; Initiators ; Ion currents ; Ion sources ; Lithium ; lithium anode ; Lithium batteries ; Lithium-ion batteries ; Metals ; polymer electrolyte ; Polymerization ; Polymers ; Polymethyl methacrylate ; Room temperature ; solid‐state lithium batteries</subject><ispartof>Energy & environmental materials (Hoboken, N.J.), 2024-11, Vol.7 (6), p.n/a</ispartof><rights>2024 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2961-cc76facd80298a5f9d773f3f398cc30c9feffbdb6dec3980de3f097cdd7df0533</cites><orcidid>0000-0001-6942-3958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feem2.12751$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feem2.12751$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,11541,27901,27902,45550,45551,46027,46384,46451,46808</link.rule.ids></links><search><creatorcontrib>Ye, Xue</creatorcontrib><creatorcontrib>Liang, Jianneng</creatorcontrib><creatorcontrib>Du, Baorong</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><creatorcontrib>Wu, Dazhuan</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Zhang, Qianling</creatorcontrib><creatorcontrib>Liu, Jianhong</creatorcontrib><title>Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite‐Free Solid‐State Lithium Metal Battery</title><title>Energy & environmental materials (Hoboken, N.J.)</title><description>This work demonstrates a novel polymerization‐derived polymer electrolyte consisting of methyl methacrylate, lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate. The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism. LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte. Normally, lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer, a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization. However, the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant. The as‐prepared poly‐methyl methacrylate‐based polymer electrolyte has a high ionic conductivity (1.19 × 10−3 S cm−1), a wide electrochemical stability window (5 V vs Li+/Li), and a high Li ion transference number (tLi+) of 0.74 at room temperature (RT). Moreover, this polymerization‐derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode, which enabled the Li symmetric cell to achieve a long‐term cycling performance at 0.2 mAh cm−2 for 2800 h. The LiFePO4 battery with polymerization‐derived polymer electrolyte‐modified Li metal anode shows a capacity retention of 91.17% after 800 cycles at 0.5 C. This work provides a facile and accessible approach to manufacturing poly‐methyl methacrylate‐based polymerization‐derived polymer electrolyte and shows great potential as an interphase in Li metal batteries.
Polymerizing monomers/oligomers using Li salts as the initiators has significant meaning in avoiding the introduction of impurities and improves interface stability between the electrodes and polymerization‐derived polymer electrolyte (PDPE). Herein, a unique method for polymerizing MMA monomer at RT using LiTFSI and FEC is described. The poly‐MMA presents excellent electrochemical performances to assist Li metal/PDPE interface formed a stable artificial polymer‐inorganic SEI.</description><subject>Anodic protection</subject><subject>Dielectric constant</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>in situ polymerization</subject><subject>Initiators</subject><subject>Ion currents</subject><subject>Ion sources</subject><subject>Lithium</subject><subject>lithium anode</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Metals</subject><subject>polymer electrolyte</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Room temperature</subject><subject>solid‐state lithium batteries</subject><issn>2575-0356</issn><issn>2575-0356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kM1KAzEUhQdRsGg3PkHAnVBNMs6ks9TaaqFFoboeMsmNTckkNZMi48pHcOvr-SRmWgVXchf377sn4STJCcHnBGN6AVDTc0JZRvaSHs1YNsBplu__qQ-TftOscIQxSS9J0Us-Zzos9aZGC24CGrm60lbbZzQxG-cdhGVrwAIacV85ywOgqdVBx6JB8-12m7jwrem2D860NXj9xoN2Fo0tr0wndwNWeh3g6_1j4gHQwhktY7MI3dXvH6IUN-iahwC-PU4OFDcN9H_yUfI0GT-O7gaz-9vp6Go2ELTIyUAIlisu5BDTYsgzVUjGUhWjGAqRYlEoUKqSVS5BxBmWkCpcMCElkwpnaXqUnO501969bKAJ5cptvI1PlikhOWFDRmmkznaU8K5pPKhy7XXNfVsSXHbul5375db9CJMd_KoNtP-Q5Xg8p7ubb82hjN4</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Ye, Xue</creator><creator>Liang, Jianneng</creator><creator>Du, Baorong</creator><creator>Li, Yongliang</creator><creator>Ren, Xiangzhong</creator><creator>Wu, Dazhuan</creator><creator>Ouyang, Xiaoping</creator><creator>Zhang, Qianling</creator><creator>Liu, Jianhong</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6942-3958</orcidid></search><sort><creationdate>202411</creationdate><title>Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite‐Free Solid‐State Lithium Metal Battery</title><author>Ye, Xue ; Liang, Jianneng ; Du, Baorong ; Li, Yongliang ; Ren, Xiangzhong ; Wu, Dazhuan ; Ouyang, Xiaoping ; Zhang, Qianling ; Liu, Jianhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2961-cc76facd80298a5f9d773f3f398cc30c9feffbdb6dec3980de3f097cdd7df0533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodic protection</topic><topic>Dielectric constant</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>in situ polymerization</topic><topic>Initiators</topic><topic>Ion currents</topic><topic>Ion sources</topic><topic>Lithium</topic><topic>lithium anode</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Metals</topic><topic>polymer electrolyte</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Room temperature</topic><topic>solid‐state lithium batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Xue</creatorcontrib><creatorcontrib>Liang, Jianneng</creatorcontrib><creatorcontrib>Du, Baorong</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><creatorcontrib>Wu, Dazhuan</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Zhang, Qianling</creatorcontrib><creatorcontrib>Liu, Jianhong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental materials (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Xue</au><au>Liang, Jianneng</au><au>Du, Baorong</au><au>Li, Yongliang</au><au>Ren, Xiangzhong</au><au>Wu, Dazhuan</au><au>Ouyang, Xiaoping</au><au>Zhang, Qianling</au><au>Liu, Jianhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite‐Free Solid‐State Lithium Metal Battery</atitle><jtitle>Energy & environmental materials (Hoboken, N.J.)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>7</volume><issue>6</issue><epage>n/a</epage><issn>2575-0356</issn><eissn>2575-0356</eissn><abstract>This work demonstrates a novel polymerization‐derived polymer electrolyte consisting of methyl methacrylate, lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate. The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism. LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte. Normally, lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer, a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization. However, the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant. The as‐prepared poly‐methyl methacrylate‐based polymer electrolyte has a high ionic conductivity (1.19 × 10−3 S cm−1), a wide electrochemical stability window (5 V vs Li+/Li), and a high Li ion transference number (tLi+) of 0.74 at room temperature (RT). Moreover, this polymerization‐derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode, which enabled the Li symmetric cell to achieve a long‐term cycling performance at 0.2 mAh cm−2 for 2800 h. The LiFePO4 battery with polymerization‐derived polymer electrolyte‐modified Li metal anode shows a capacity retention of 91.17% after 800 cycles at 0.5 C. This work provides a facile and accessible approach to manufacturing poly‐methyl methacrylate‐based polymerization‐derived polymer electrolyte and shows great potential as an interphase in Li metal batteries.
Polymerizing monomers/oligomers using Li salts as the initiators has significant meaning in avoiding the introduction of impurities and improves interface stability between the electrodes and polymerization‐derived polymer electrolyte (PDPE). Herein, a unique method for polymerizing MMA monomer at RT using LiTFSI and FEC is described. The poly‐MMA presents excellent electrochemical performances to assist Li metal/PDPE interface formed a stable artificial polymer‐inorganic SEI.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eem2.12751</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6942-3958</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2575-0356 |
ispartof | Energy & environmental materials (Hoboken, N.J.), 2024-11, Vol.7 (6), p.n/a |
issn | 2575-0356 2575-0356 |
language | eng |
recordid | cdi_proquest_journals_3116178722 |
source | Wiley Free Content; Wiley Online Library Open Access; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Anodic protection Dielectric constant Electrochemistry Electrolytes in situ polymerization Initiators Ion currents Ion sources Lithium lithium anode Lithium batteries Lithium-ion batteries Metals polymer electrolyte Polymerization Polymers Polymethyl methacrylate Room temperature solid‐state lithium batteries |
title | Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite‐Free Solid‐State Lithium Metal Battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Salt%20Combining%20Fluoroethylene%20Carbonate%20Initiates%20Methyl%20Methacrylate%20Polymerization%20Enabling%20Dendrite%E2%80%90Free%20Solid%E2%80%90State%20Lithium%20Metal%20Battery&rft.jtitle=Energy%20&%20environmental%20materials%20(Hoboken,%20N.J.)&rft.au=Ye,%20Xue&rft.date=2024-11&rft.volume=7&rft.issue=6&rft.epage=n/a&rft.issn=2575-0356&rft.eissn=2575-0356&rft_id=info:doi/10.1002/eem2.12751&rft_dat=%3Cproquest_cross%3E3116178722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116178722&rft_id=info:pmid/&rfr_iscdi=true |