Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite‐Free Solid‐State Lithium Metal Battery

This work demonstrates a novel polymerization‐derived polymer electrolyte consisting of methyl methacrylate, lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate. The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism. LiTFSI plays...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental materials (Hoboken, N.J.) N.J.), 2024-11, Vol.7 (6), p.n/a
Hauptverfasser: Ye, Xue, Liang, Jianneng, Du, Baorong, Li, Yongliang, Ren, Xiangzhong, Wu, Dazhuan, Ouyang, Xiaoping, Zhang, Qianling, Liu, Jianhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Energy & environmental materials (Hoboken, N.J.)
container_volume 7
creator Ye, Xue
Liang, Jianneng
Du, Baorong
Li, Yongliang
Ren, Xiangzhong
Wu, Dazhuan
Ouyang, Xiaoping
Zhang, Qianling
Liu, Jianhong
description This work demonstrates a novel polymerization‐derived polymer electrolyte consisting of methyl methacrylate, lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate. The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism. LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte. Normally, lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer, a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization. However, the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant. The as‐prepared poly‐methyl methacrylate‐based polymer electrolyte has a high ionic conductivity (1.19 × 10−3 S cm−1), a wide electrochemical stability window (5 V vs Li+/Li), and a high Li ion transference number (tLi+) of 0.74 at room temperature (RT). Moreover, this polymerization‐derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode, which enabled the Li symmetric cell to achieve a long‐term cycling performance at 0.2 mAh cm−2 for 2800 h. The LiFePO4 battery with polymerization‐derived polymer electrolyte‐modified Li metal anode shows a capacity retention of 91.17% after 800 cycles at 0.5 C. This work provides a facile and accessible approach to manufacturing poly‐methyl methacrylate‐based polymerization‐derived polymer electrolyte and shows great potential as an interphase in Li metal batteries. Polymerizing monomers/oligomers using Li salts as the initiators has significant meaning in avoiding the introduction of impurities and improves interface stability between the electrodes and polymerization‐derived polymer electrolyte (PDPE). Herein, a unique method for polymerizing MMA monomer at RT using LiTFSI and FEC is described. The poly‐MMA presents excellent electrochemical performances to assist Li metal/PDPE interface formed a stable artificial polymer‐inorganic SEI.
doi_str_mv 10.1002/eem2.12751
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3116178722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116178722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2961-cc76facd80298a5f9d773f3f398cc30c9feffbdb6dec3980de3f097cdd7df0533</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhQdRsGg3PkHAnVBNMs6ks9TaaqFFoboeMsmNTckkNZMi48pHcOvr-SRmWgVXchf377sn4STJCcHnBGN6AVDTc0JZRvaSHs1YNsBplu__qQ-TftOscIQxSS9J0Us-Zzos9aZGC24CGrm60lbbZzQxG-cdhGVrwAIacV85ywOgqdVBx6JB8-12m7jwrem2D860NXj9xoN2Fo0tr0wndwNWeh3g6_1j4gHQwhktY7MI3dXvH6IUN-iahwC-PU4OFDcN9H_yUfI0GT-O7gaz-9vp6Go2ELTIyUAIlisu5BDTYsgzVUjGUhWjGAqRYlEoUKqSVS5BxBmWkCpcMCElkwpnaXqUnO501969bKAJ5cptvI1PlikhOWFDRmmkznaU8K5pPKhy7XXNfVsSXHbul5375db9CJMd_KoNtP-Q5Xg8p7ubb82hjN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116178722</pqid></control><display><type>article</type><title>Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite‐Free Solid‐State Lithium Metal Battery</title><source>Wiley Free Content</source><source>Wiley Online Library Open Access</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ye, Xue ; Liang, Jianneng ; Du, Baorong ; Li, Yongliang ; Ren, Xiangzhong ; Wu, Dazhuan ; Ouyang, Xiaoping ; Zhang, Qianling ; Liu, Jianhong</creator><creatorcontrib>Ye, Xue ; Liang, Jianneng ; Du, Baorong ; Li, Yongliang ; Ren, Xiangzhong ; Wu, Dazhuan ; Ouyang, Xiaoping ; Zhang, Qianling ; Liu, Jianhong</creatorcontrib><description>This work demonstrates a novel polymerization‐derived polymer electrolyte consisting of methyl methacrylate, lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate. The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism. LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte. Normally, lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer, a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization. However, the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant. The as‐prepared poly‐methyl methacrylate‐based polymer electrolyte has a high ionic conductivity (1.19 × 10−3 S cm−1), a wide electrochemical stability window (5 V vs Li+/Li), and a high Li ion transference number (tLi+) of 0.74 at room temperature (RT). Moreover, this polymerization‐derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode, which enabled the Li symmetric cell to achieve a long‐term cycling performance at 0.2 mAh cm−2 for 2800 h. The LiFePO4 battery with polymerization‐derived polymer electrolyte‐modified Li metal anode shows a capacity retention of 91.17% after 800 cycles at 0.5 C. This work provides a facile and accessible approach to manufacturing poly‐methyl methacrylate‐based polymerization‐derived polymer electrolyte and shows great potential as an interphase in Li metal batteries. Polymerizing monomers/oligomers using Li salts as the initiators has significant meaning in avoiding the introduction of impurities and improves interface stability between the electrodes and polymerization‐derived polymer electrolyte (PDPE). Herein, a unique method for polymerizing MMA monomer at RT using LiTFSI and FEC is described. The poly‐MMA presents excellent electrochemical performances to assist Li metal/PDPE interface formed a stable artificial polymer‐inorganic SEI.</description><identifier>ISSN: 2575-0356</identifier><identifier>EISSN: 2575-0356</identifier><identifier>DOI: 10.1002/eem2.12751</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anodic protection ; Dielectric constant ; Electrochemistry ; Electrolytes ; in situ polymerization ; Initiators ; Ion currents ; Ion sources ; Lithium ; lithium anode ; Lithium batteries ; Lithium-ion batteries ; Metals ; polymer electrolyte ; Polymerization ; Polymers ; Polymethyl methacrylate ; Room temperature ; solid‐state lithium batteries</subject><ispartof>Energy &amp; environmental materials (Hoboken, N.J.), 2024-11, Vol.7 (6), p.n/a</ispartof><rights>2024 The Authors. published by John Wiley &amp; Sons Australia, Ltd on behalf of Zhengzhou University.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2961-cc76facd80298a5f9d773f3f398cc30c9feffbdb6dec3980de3f097cdd7df0533</cites><orcidid>0000-0001-6942-3958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feem2.12751$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feem2.12751$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,11541,27901,27902,45550,45551,46027,46384,46451,46808</link.rule.ids></links><search><creatorcontrib>Ye, Xue</creatorcontrib><creatorcontrib>Liang, Jianneng</creatorcontrib><creatorcontrib>Du, Baorong</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><creatorcontrib>Wu, Dazhuan</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Zhang, Qianling</creatorcontrib><creatorcontrib>Liu, Jianhong</creatorcontrib><title>Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite‐Free Solid‐State Lithium Metal Battery</title><title>Energy &amp; environmental materials (Hoboken, N.J.)</title><description>This work demonstrates a novel polymerization‐derived polymer electrolyte consisting of methyl methacrylate, lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate. The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism. LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte. Normally, lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer, a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization. However, the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant. The as‐prepared poly‐methyl methacrylate‐based polymer electrolyte has a high ionic conductivity (1.19 × 10−3 S cm−1), a wide electrochemical stability window (5 V vs Li+/Li), and a high Li ion transference number (tLi+) of 0.74 at room temperature (RT). Moreover, this polymerization‐derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode, which enabled the Li symmetric cell to achieve a long‐term cycling performance at 0.2 mAh cm−2 for 2800 h. The LiFePO4 battery with polymerization‐derived polymer electrolyte‐modified Li metal anode shows a capacity retention of 91.17% after 800 cycles at 0.5 C. This work provides a facile and accessible approach to manufacturing poly‐methyl methacrylate‐based polymerization‐derived polymer electrolyte and shows great potential as an interphase in Li metal batteries. Polymerizing monomers/oligomers using Li salts as the initiators has significant meaning in avoiding the introduction of impurities and improves interface stability between the electrodes and polymerization‐derived polymer electrolyte (PDPE). Herein, a unique method for polymerizing MMA monomer at RT using LiTFSI and FEC is described. The poly‐MMA presents excellent electrochemical performances to assist Li metal/PDPE interface formed a stable artificial polymer‐inorganic SEI.</description><subject>Anodic protection</subject><subject>Dielectric constant</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>in situ polymerization</subject><subject>Initiators</subject><subject>Ion currents</subject><subject>Ion sources</subject><subject>Lithium</subject><subject>lithium anode</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Metals</subject><subject>polymer electrolyte</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Room temperature</subject><subject>solid‐state lithium batteries</subject><issn>2575-0356</issn><issn>2575-0356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kM1KAzEUhQdRsGg3PkHAnVBNMs6ks9TaaqFFoboeMsmNTckkNZMi48pHcOvr-SRmWgVXchf377sn4STJCcHnBGN6AVDTc0JZRvaSHs1YNsBplu__qQ-TftOscIQxSS9J0Us-Zzos9aZGC24CGrm60lbbZzQxG-cdhGVrwAIacV85ywOgqdVBx6JB8-12m7jwrem2D860NXj9xoN2Fo0tr0wndwNWeh3g6_1j4gHQwhktY7MI3dXvH6IUN-iahwC-PU4OFDcN9H_yUfI0GT-O7gaz-9vp6Go2ELTIyUAIlisu5BDTYsgzVUjGUhWjGAqRYlEoUKqSVS5BxBmWkCpcMCElkwpnaXqUnO501969bKAJ5cptvI1PlikhOWFDRmmkznaU8K5pPKhy7XXNfVsSXHbul5375db9CJMd_KoNtP-Q5Xg8p7ubb82hjN4</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Ye, Xue</creator><creator>Liang, Jianneng</creator><creator>Du, Baorong</creator><creator>Li, Yongliang</creator><creator>Ren, Xiangzhong</creator><creator>Wu, Dazhuan</creator><creator>Ouyang, Xiaoping</creator><creator>Zhang, Qianling</creator><creator>Liu, Jianhong</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6942-3958</orcidid></search><sort><creationdate>202411</creationdate><title>Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite‐Free Solid‐State Lithium Metal Battery</title><author>Ye, Xue ; Liang, Jianneng ; Du, Baorong ; Li, Yongliang ; Ren, Xiangzhong ; Wu, Dazhuan ; Ouyang, Xiaoping ; Zhang, Qianling ; Liu, Jianhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2961-cc76facd80298a5f9d773f3f398cc30c9feffbdb6dec3980de3f097cdd7df0533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodic protection</topic><topic>Dielectric constant</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>in situ polymerization</topic><topic>Initiators</topic><topic>Ion currents</topic><topic>Ion sources</topic><topic>Lithium</topic><topic>lithium anode</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Metals</topic><topic>polymer electrolyte</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Room temperature</topic><topic>solid‐state lithium batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Xue</creatorcontrib><creatorcontrib>Liang, Jianneng</creatorcontrib><creatorcontrib>Du, Baorong</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><creatorcontrib>Wu, Dazhuan</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Zhang, Qianling</creatorcontrib><creatorcontrib>Liu, Jianhong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental materials (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Xue</au><au>Liang, Jianneng</au><au>Du, Baorong</au><au>Li, Yongliang</au><au>Ren, Xiangzhong</au><au>Wu, Dazhuan</au><au>Ouyang, Xiaoping</au><au>Zhang, Qianling</au><au>Liu, Jianhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite‐Free Solid‐State Lithium Metal Battery</atitle><jtitle>Energy &amp; environmental materials (Hoboken, N.J.)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>7</volume><issue>6</issue><epage>n/a</epage><issn>2575-0356</issn><eissn>2575-0356</eissn><abstract>This work demonstrates a novel polymerization‐derived polymer electrolyte consisting of methyl methacrylate, lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate. The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism. LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte. Normally, lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer, a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization. However, the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant. The as‐prepared poly‐methyl methacrylate‐based polymer electrolyte has a high ionic conductivity (1.19 × 10−3 S cm−1), a wide electrochemical stability window (5 V vs Li+/Li), and a high Li ion transference number (tLi+) of 0.74 at room temperature (RT). Moreover, this polymerization‐derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode, which enabled the Li symmetric cell to achieve a long‐term cycling performance at 0.2 mAh cm−2 for 2800 h. The LiFePO4 battery with polymerization‐derived polymer electrolyte‐modified Li metal anode shows a capacity retention of 91.17% after 800 cycles at 0.5 C. This work provides a facile and accessible approach to manufacturing poly‐methyl methacrylate‐based polymerization‐derived polymer electrolyte and shows great potential as an interphase in Li metal batteries. Polymerizing monomers/oligomers using Li salts as the initiators has significant meaning in avoiding the introduction of impurities and improves interface stability between the electrodes and polymerization‐derived polymer electrolyte (PDPE). Herein, a unique method for polymerizing MMA monomer at RT using LiTFSI and FEC is described. The poly‐MMA presents excellent electrochemical performances to assist Li metal/PDPE interface formed a stable artificial polymer‐inorganic SEI.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eem2.12751</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6942-3958</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2575-0356
ispartof Energy & environmental materials (Hoboken, N.J.), 2024-11, Vol.7 (6), p.n/a
issn 2575-0356
2575-0356
language eng
recordid cdi_proquest_journals_3116178722
source Wiley Free Content; Wiley Online Library Open Access; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Anodic protection
Dielectric constant
Electrochemistry
Electrolytes
in situ polymerization
Initiators
Ion currents
Ion sources
Lithium
lithium anode
Lithium batteries
Lithium-ion batteries
Metals
polymer electrolyte
Polymerization
Polymers
Polymethyl methacrylate
Room temperature
solid‐state lithium batteries
title Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite‐Free Solid‐State Lithium Metal Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Salt%20Combining%20Fluoroethylene%20Carbonate%20Initiates%20Methyl%20Methacrylate%20Polymerization%20Enabling%20Dendrite%E2%80%90Free%20Solid%E2%80%90State%20Lithium%20Metal%20Battery&rft.jtitle=Energy%20&%20environmental%20materials%20(Hoboken,%20N.J.)&rft.au=Ye,%20Xue&rft.date=2024-11&rft.volume=7&rft.issue=6&rft.epage=n/a&rft.issn=2575-0356&rft.eissn=2575-0356&rft_id=info:doi/10.1002/eem2.12751&rft_dat=%3Cproquest_cross%3E3116178722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116178722&rft_id=info:pmid/&rfr_iscdi=true