Summability of double Fourier series on quantum tori

In this paper, we study two general summability methods generated by a function θ for noncommutative Fourier series on quantum tori T q 2 . For the rectangular θ -summation, we establish the noncommutative weak type maximal inequality ‖ ( σ m , n θ ( f ) ) ( m , n ) ∈ Σ β ‖ Λ 1 , ∞ ( T q 2 , ℓ ∞ ) ≤...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2024-11, Vol.308 (3), Article 47
Hauptverfasser: Jiao, Yong, Zhou, Dejian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study two general summability methods generated by a function θ for noncommutative Fourier series on quantum tori T q 2 . For the rectangular θ -summation, we establish the noncommutative weak type maximal inequality ‖ ( σ m , n θ ( f ) ) ( m , n ) ∈ Σ β ‖ Λ 1 , ∞ ( T q 2 , ℓ ∞ ) ≤ c β , θ ‖ f ‖ L 1 ( T q 2 ) , which generalizes the result due to Marcinkiewicz and Zygmund (Fundam Math 32:122–132, 1939). For the Marcinkiewicz θ -summation, we prove that ‖ ( F n θ ( f ) ) n ≥ 1 ‖ Λ 1 , ∞ ( T q 2 , ℓ ∞ ) ≤ c θ ‖ f ‖ L 1 ( T q 2 ) . Both noncommutative weak type maximal inequalities imply the bilateral almost uniform convergence. The θ -summation contains almost all well known summability methods, such as the Fejér, Weierstrass, Riesz, Picard, Bessel, Riemann, Rogosinski and de La Vallée–Poussin summations.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-024-03604-7