Summability of double Fourier series on quantum tori
In this paper, we study two general summability methods generated by a function θ for noncommutative Fourier series on quantum tori T q 2 . For the rectangular θ -summation, we establish the noncommutative weak type maximal inequality ‖ ( σ m , n θ ( f ) ) ( m , n ) ∈ Σ β ‖ Λ 1 , ∞ ( T q 2 , ℓ ∞ ) ≤...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2024-11, Vol.308 (3), Article 47 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study two general summability methods generated by a function
θ
for noncommutative Fourier series on quantum tori
T
q
2
. For the rectangular
θ
-summation, we establish the noncommutative weak type maximal inequality
‖
(
σ
m
,
n
θ
(
f
)
)
(
m
,
n
)
∈
Σ
β
‖
Λ
1
,
∞
(
T
q
2
,
ℓ
∞
)
≤
c
β
,
θ
‖
f
‖
L
1
(
T
q
2
)
,
which generalizes the result due to Marcinkiewicz and Zygmund (Fundam Math 32:122–132, 1939). For the Marcinkiewicz
θ
-summation, we prove that
‖
(
F
n
θ
(
f
)
)
n
≥
1
‖
Λ
1
,
∞
(
T
q
2
,
ℓ
∞
)
≤
c
θ
‖
f
‖
L
1
(
T
q
2
)
.
Both noncommutative weak type maximal inequalities imply the bilateral almost uniform convergence. The
θ
-summation contains almost all well known summability methods, such as the Fejér, Weierstrass, Riesz, Picard, Bessel, Riemann, Rogosinski and de La Vallée–Poussin summations. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-024-03604-7 |