The Radon–Penrose Transformation for Quaternionic k-Regular Functions on Right-Type Groups
The right-type groups are nilpotent Lie groups of step two having a pair of anticommutative operators, and many aspects of quaternionic analysis can be generalized to this kind of groups. In this paper, we use the twistor transformation to study the tangential k -Cauchy–Fueter equations and quaterni...
Gespeichert in:
Veröffentlicht in: | Advances in applied Clifford algebras 2024-11, Vol.34 (5), Article 52 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The right-type groups are nilpotent Lie groups of step two having a pair of anticommutative operators, and many aspects of quaternionic analysis can be generalized to this kind of groups. In this paper, we use the twistor transformation to study the tangential
k
-Cauchy–Fueter equations and quaternionic
k
-regular functions on these groups. We introduce the twistor space over the
(
4
n
+
r
)
-dimensional complex right-type groups and use twistor transformation to construct an explicit Radon–Penrose type integral formula to solve the holomorphic tangential
k
-Cauchy–Fueter equation on these groups. When restricted to the real right-type group, this formula provides solutions to tangential
k
-Cauchy–Fueter equations. In particular, it gives us many
k
-regular polynomials. |
---|---|
ISSN: | 0188-7009 1661-4909 |
DOI: | 10.1007/s00006-024-01360-9 |