The Radon–Penrose Transformation for Quaternionic k-Regular Functions on Right-Type Groups

The right-type groups are nilpotent Lie groups of step two having a pair of anticommutative operators, and many aspects of quaternionic analysis can be generalized to this kind of groups. In this paper, we use the twistor transformation to study the tangential k -Cauchy–Fueter equations and quaterni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied Clifford algebras 2024-11, Vol.34 (5), Article 52
Hauptverfasser: Kang, Qianqian, Ren, Guangzhen, Shi, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The right-type groups are nilpotent Lie groups of step two having a pair of anticommutative operators, and many aspects of quaternionic analysis can be generalized to this kind of groups. In this paper, we use the twistor transformation to study the tangential k -Cauchy–Fueter equations and quaternionic k -regular functions on these groups. We introduce the twistor space over the ( 4 n + r ) -dimensional complex right-type groups and use twistor transformation to construct an explicit Radon–Penrose type integral formula to solve the holomorphic tangential k -Cauchy–Fueter equation on these groups. When restricted to the real right-type group, this formula provides solutions to tangential k -Cauchy–Fueter equations. In particular, it gives us many k -regular polynomials.
ISSN:0188-7009
1661-4909
DOI:10.1007/s00006-024-01360-9