Approximate weak efficiency of the set-valued optimization problem with variable ordering structures
In locally convex spaces, we introduce the new notion of approximate weakly efficient solution of the set-valued optimization problem with variable ordering structures (in short, SVOPVOS) and compare it with other kinds of solutions. Under the assumption of near D ( · ) -subconvexlikeness, we establ...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial optimization 2024-10, Vol.48 (3), Article 27 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In locally convex spaces, we introduce the new notion of approximate weakly efficient solution of the set-valued optimization problem with variable ordering structures (in short, SVOPVOS) and compare it with other kinds of solutions. Under the assumption of near
D
(
·
)
-subconvexlikeness, we establish linear scalarization theorems of (SVOPVOS) in the sense of approximate weak efficiency. Finally, without any convexity, we obtain a nonlinear scalarization theorem of (SVOPVOS). We also present some examples to illustrate our results. |
---|---|
ISSN: | 1382-6905 1573-2886 |
DOI: | 10.1007/s10878-024-01211-0 |