Nonparametric estimation of P(X<Y) from noisy data samples with non-standard error distributions
Let X , Y be continuous random variables with unknown distributions. The aim of this paper is to study the problem of estimating the probability θ : = P ( X < Y ) based on independent random samples from the distributions of X ′ , Y ′ , ζ and η , where X ′ = X + ζ , Y ′ = Y + η and X , Y , ζ , η...
Gespeichert in:
Veröffentlicht in: | Metrika 2024, Vol.87 (8), p.973-1006 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
,
Y
be continuous random variables with unknown distributions. The aim of this paper is to study the problem of estimating the probability
θ
:
=
P
(
X
<
Y
)
based on independent random samples from the distributions of
X
′
,
Y
′
,
ζ
and
η
, where
X
′
=
X
+
ζ
,
Y
′
=
Y
+
η
and
X
,
Y
,
ζ
,
η
are mutually independent random variables. In this context,
ζ
,
η
are referred to as measurement errors. We apply the ridge-parameter regularization method to derive a nonparametric estimator for
θ
depending on two parameters. Our estimator is shown to be consistent with respect to mean squared error if the characteristic functions of
ζ
,
η
only vanish on Lebesgue measure zero sets. Under some further assumptions on the densities of
X
,
Y
,
ζ
and
η
, we obtain some upper and lower bounds on the convergence rate of the estimator. A numerical example is also given to illustrate the efficiency of our method. |
---|---|
ISSN: | 0026-1335 1435-926X |
DOI: | 10.1007/s00184-023-00941-1 |