Tuning FeO covalency boosts catalytic ozonation over spinel oxide for chemical industrial wastewater decontamination

Heterogeneous catalytic ozonation (HCO) emerges as a promising chemical industrial wastewater treatment solution, offering enhanced ozone utilization and reduced secondary pollutants. However, challenges in scaling HCO arise from a limited understanding of the catalytic mechanisms of metal oxides, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2024-11, Vol.70 (11), p.n/a
Hauptverfasser: Cao, Xu, Wang, Zhao‐Hua, Guo, Zhi‐Yan, Yang, Si‐Yu, Wu, Gang, Hu, Jun, Li, Wen‐Wei, Liu, Xian‐Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heterogeneous catalytic ozonation (HCO) emerges as a promising chemical industrial wastewater treatment solution, offering enhanced ozone utilization and reduced secondary pollutants. However, challenges in scaling HCO arise from a limited understanding of the catalytic mechanisms of metal oxides, particularly in generating active ozone sites. Here, we demonstrated the improvement of catalytic ozonation efficiency by enhancing the covalent bonding between FeO in Fe/Co spinel oxides. This alteration exploits the stronger electron‐donating capacity of Fe (II), enhancing FeOM bonds and electron enrichment at iron sites, leading to a significant reduction in the activation energy for ozone. Pilot experiments demonstrated a 75.3% COD removal efficiency and a threefold increase in ozone utilization efficiency compared to pure ozone system for chemical industrial wastewater treatment. This study not only advances our understanding of spinel oxides in ozone catalysis but also opens new avenues for practical HCO applications in water treatment.
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.18569