Relative Poincaré duality in nonarchimedean geometry

We prove a conjecture of Bhatt-Hansen that derived pushforwards along proper morphisms of rigid-analytic spaces commute with Verdier duality on Zariski-constructible complexes. In particular, this yields duality statements for the intersection cohomology of proper rigid-analytic spaces. In our argum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Li, Shizhang, Reinecke, Emanuel, Zavyalov, Bogdan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a conjecture of Bhatt-Hansen that derived pushforwards along proper morphisms of rigid-analytic spaces commute with Verdier duality on Zariski-constructible complexes. In particular, this yields duality statements for the intersection cohomology of proper rigid-analytic spaces. In our argument, we construct cycle classes in analytic geometry as well as trace maps for morphisms that are either smooth or proper or finite flat, with appropriate coefficients. As an application of our methods, we obtain new, significantly simplified proofs of \(p\)-adic Poincaré duality and the preservation of \(\mathbf{F}_p\)-local systems under smooth proper higher direct images.
ISSN:2331-8422