Optimized Spatial Architecture Mapping Flow for Transformer Accelerators
Recent innovations in Transformer-based large language models have significantly advanced the field of general-purpose neural language understanding and generation. With billions of trainable parameters, deployment of these large models relies on high-performance hardware accelerators to efficiently...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent innovations in Transformer-based large language models have significantly advanced the field of general-purpose neural language understanding and generation. With billions of trainable parameters, deployment of these large models relies on high-performance hardware accelerators to efficiently deliver the required computation. Spatial architectures, such as TPUs, offer a promising solution to accelerating computation-intensive workloads. However, the design process for existing spatial architectures is predominantly manual, and it often involves time-consuming redesigns for new applications and new problem dimensions, which greatly limits the development of optimally designed accelerators for Transformer models. To address these challenges, we propose SAMT (Spatial Architecture Mapping for Transformers), a comprehensive framework designed to optimize the dataflow mapping of Transformer inference workloads onto spatial accelerators. We demonstrate the effectiveness of SAMT in improving the performance of spatial accelerators for Transformer models. We propose and leverage the dynamic operator fusion schemes for the Transformer models and co-search the optimal dataflow mapping strategies for spatial accelerators. SAMT significantly reduces inference latency by 12% to 91% and energy consumption by 3% to 23% for evaluated Transformer models compared to traditional spatial accelerator designs among edge, mobile and cloud settings. |
---|---|
ISSN: | 2331-8422 |