A Generalized Metriplectic System via Free Energy and System~Identification via Bilevel Convex Optimization
This work generalizes the classical metriplectic formalism to model Hamiltonian systems with nonconservative dissipation. Classical metriplectic representations allow for the description of energy conservation and production of entropy via a suitable selection of an entropy function and a bilinear s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work generalizes the classical metriplectic formalism to model Hamiltonian systems with nonconservative dissipation. Classical metriplectic representations allow for the description of energy conservation and production of entropy via a suitable selection of an entropy function and a bilinear symmetric metric. By relaxing the Casimir invariance requirement of the entropy function, this paper shows that the generalized formalism induces the free energy analogous to thermodynamics. The monotonic change of free energy can serve as a more precise criterion than mechanical energy or entropy alone. This paper provides examples of the generalized metriplectic system in a 2-dimensional Hamiltonian system and \(\mathrm{SO}(3)\). This paper also provides a bilevel convex optimization approach for the identification of the metriplectic system given measurements of the system. |
---|---|
ISSN: | 2331-8422 |