Applying Generative Machine Learning to Intrusion Detection: A Systematic Mapping Study and Review

Intrusion Detection Systems (IDSs) are an essential element of modern cyber defense, alerting users to when and where cyber-attacks occur. Machine learning can enable IDSs to further distinguish between benign and malicious behaviors, but it comes with several challenges, including lack of quality t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM computing surveys 2024-10, Vol.56 (10), p.1-33, Article 257
Hauptverfasser: Halvorsen, James, Izurieta, Clemente, Cai, Haipeng, Gebremedhin, Assefaw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intrusion Detection Systems (IDSs) are an essential element of modern cyber defense, alerting users to when and where cyber-attacks occur. Machine learning can enable IDSs to further distinguish between benign and malicious behaviors, but it comes with several challenges, including lack of quality training data and high false-positive rates. Generative Machine Learning Models (GMLMs) can help overcome these challenges. This article offers an in-depth exploration of GMLMs’ application to intrusion detection. It gives (1) a systematic mapping study of research at the intersection of GMLMs and IDSs, and (2) a detailed review providing insights and directions for future research.
ISSN:0360-0300
1557-7341
DOI:10.1145/3659575