Future Changes in Synoptic-Scale Conditions Causing Widespread Heavy Precipitation Events over Japan
To identify and characterize the synoptic-scale precipitation systems causing widespread heavy precipitation events over Japan and to evaluate their possible future changes, annual maximum of area-averaged daily and 5-day accumulated precipitation for 720 years were analyzed for both historical and...
Gespeichert in:
Veröffentlicht in: | SOLA 2024, Vol.20, pp.198-206 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To identify and characterize the synoptic-scale precipitation systems causing widespread heavy precipitation events over Japan and to evaluate their possible future changes, annual maximum of area-averaged daily and 5-day accumulated precipitation for 720 years were analyzed for both historical and 4 K warming climates using a large ensemble dataset with 5 km horizontal resolution. According to statistical cluster analysis, the approach of tropical cyclones is the primary factor causing widespread heavy precipitation events in both the historical and 4 K warming experiments, although the Baiu front and migratory extratropical cyclones also contribute to event occurrence. The frequency of tropical-cyclone-associated events is lower in the 4 K warming climate compared with the historical experiment because the occurrence frequency of tropical cyclones is lower over the western North Pacific. The decrease in frequency of tropical-cyclone-associated events leads to a relative increase in the frequency of events associated with other precipitation systems (i.e., the Baiu front and migratory extratropical cyclones) under the warming climate. The anomalous moisture supply in the 4 K warming experiment causes the widespread heavy precipitation derived from the Baiu front and migratory extratropical cyclones to intensify to reach a magnitude comparable to that of historical-climate tropical-cyclone-associated events. |
---|---|
ISSN: | 1349-6476 1349-6476 |
DOI: | 10.2151/sola.2024-027 |