Existence and Concentration of Semiclassical Bound States for a Quasilinear Schrödinger-Poisson System

In the paper we consider the following quasilinear Schrödinger–Poisson system in the whole space R 3 - ε 2 Δ u + ( V + ϕ ) u = u u p - 1 - Δ ϕ - β Δ 4 ϕ = u 2 , where 1 < p < 5 , β > 0 , V : R 3 → ] 0 , ∞ [ , and look for solutions u , ϕ : R 3 → R in the semiclassical regime, namely when ε...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2024-11, Vol.47 (6), Article 180
Hauptverfasser: de Paula Ramos, Gustavo, Siciliano, Gaetano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the paper we consider the following quasilinear Schrödinger–Poisson system in the whole space R 3 - ε 2 Δ u + ( V + ϕ ) u = u u p - 1 - Δ ϕ - β Δ 4 ϕ = u 2 , where 1 < p < 5 , β > 0 , V : R 3 → ] 0 , ∞ [ , and look for solutions u , ϕ : R 3 → R in the semiclassical regime, namely when ε → 0 . By means of the Lyapunov–Schmidt method we estimate the number of solutions by the cup-length of the critical manifold of the external potential V .
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-024-01761-w