Existence and Concentration of Semiclassical Bound States for a Quasilinear Schrödinger-Poisson System
In the paper we consider the following quasilinear Schrödinger–Poisson system in the whole space R 3 - ε 2 Δ u + ( V + ϕ ) u = u u p - 1 - Δ ϕ - β Δ 4 ϕ = u 2 , where 1 < p < 5 , β > 0 , V : R 3 → ] 0 , ∞ [ , and look for solutions u , ϕ : R 3 → R in the semiclassical regime, namely when ε...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2024-11, Vol.47 (6), Article 180 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the paper we consider the following quasilinear Schrödinger–Poisson system in the whole space
R
3
-
ε
2
Δ
u
+
(
V
+
ϕ
)
u
=
u
u
p
-
1
-
Δ
ϕ
-
β
Δ
4
ϕ
=
u
2
,
where
1
<
p
<
5
,
β
>
0
,
V
:
R
3
→
]
0
,
∞
[
, and look for solutions
u
,
ϕ
:
R
3
→
R
in the semiclassical regime, namely when
ε
→
0
.
By means of the Lyapunov–Schmidt method we estimate the number of solutions by the cup-length of the critical manifold of the external potential
V
. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-024-01761-w |