Some New Properties Using Quaternionic Fourier–Mellin Transform on the Space L2(G,H)

In this present work, by using the Quaternionic Fourier–Mellin transform and a new translation operator, we give some characterizations of quaternion-valued functions satisfying certain Lipschitz conditions on G , where G = R + ∗ × S 1 and S 1 denotes the unit circle of the plane R 2 . Moreover, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2024, Vol.47 (6)
Hauptverfasser: Nadi, M., Bouhlal, A., Sadek, E. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this present work, by using the Quaternionic Fourier–Mellin transform and a new translation operator, we give some characterizations of quaternion-valued functions satisfying certain Lipschitz conditions on G , where G = R + ∗ × S 1 and S 1 denotes the unit circle of the plane R 2 . Moreover, in the second main result of this paper, after defining the Fourier–Mellin K-functional and the Fourier–Mellin modulus of smoothness, we prove their equivalence on the spaces L 2 ( G , H ) .
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-024-01767-4