Some New Properties Using Quaternionic Fourier–Mellin Transform on the Space L2(G,H)
In this present work, by using the Quaternionic Fourier–Mellin transform and a new translation operator, we give some characterizations of quaternion-valued functions satisfying certain Lipschitz conditions on G , where G = R + ∗ × S 1 and S 1 denotes the unit circle of the plane R 2 . Moreover, in...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2024, Vol.47 (6) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this present work, by using the Quaternionic Fourier–Mellin transform and a new translation operator, we give some characterizations of quaternion-valued functions satisfying certain Lipschitz conditions on
G
, where
G
=
R
+
∗
×
S
1
and
S
1
denotes the unit circle of the plane
R
2
. Moreover, in the second main result of this paper, after defining the Fourier–Mellin K-functional and the Fourier–Mellin modulus of smoothness, we prove their equivalence on the spaces
L
2
(
G
,
H
)
. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-024-01767-4 |