Common substring with shifts in b-ary expansions

Denote by S n ( x , y ) the length of the longest common substring of x and y with shifts in their first n digits of the b -ary expansions. We show that the sets of pairs ( x ,  y ), for which the growth rate of S n ( x , y ) is α log n with 0 ≤ α ≤ ∞ , have full Hausdorff dimension. Our method reli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2024-10, Vol.123 (4), p.369-377
Hauptverfasser: Liao, Xin, Yu, Dingding
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Denote by S n ( x , y ) the length of the longest common substring of x and y with shifts in their first n digits of the b -ary expansions. We show that the sets of pairs ( x ,  y ), for which the growth rate of S n ( x , y ) is α log n with 0 ≤ α ≤ ∞ , have full Hausdorff dimension. Our method relies upon some estimation of the spectral radius of matrices.
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-024-02038-1