Nonparametric estimator of the tail dependence coefficient: balancing bias and variance
A theoretical expression is derived for the mean squared error of a nonparametric estimator of the tail dependence coefficient, depending on a threshold that defines which rank delimits the tails of a distribution. We propose a new method to optimally select this threshold. It combines the theoretic...
Gespeichert in:
Veröffentlicht in: | Statistical papers (Berlin, Germany) Germany), 2024-10, Vol.65 (8), p.4875-4913 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A theoretical expression is derived for the mean squared error of a nonparametric estimator of the tail dependence coefficient, depending on a threshold that defines which rank delimits the tails of a distribution. We propose a new method to optimally select this threshold. It combines the theoretical mean squared error of the estimator with a parametric estimation of the copula linking observations in the tails. Using simulations, we compare this semiparametric method with other approaches proposed in the literature, including the plateau-finding algorithm. |
---|---|
ISSN: | 0932-5026 1613-9798 |
DOI: | 10.1007/s00362-024-01582-w |