Polynomial Approximation by Doubly Periodic Weierstrass Functions on Disjoint Segments in the LP Metric

Let s k , 1 ≤ k ≤ m , m ≥ 2, be disjoint segments lying in a parallelogram Q . Denote by ℘ ( z ) a doubly periodic Weierstrass function with the fundamental parallelogram Q . Let f k : s k → ℂ be functions, and let f k ′ ∈ L p k ( s k ), 1 ≤ k ≤ m , 1 < p k < ∞. Consider the Green function G (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2024, Vol.284 (6), p.894-903
Hauptverfasser: Shagay, M. A., Shirokov, N. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let s k , 1 ≤ k ≤ m , m ≥ 2, be disjoint segments lying in a parallelogram Q . Denote by ℘ ( z ) a doubly periodic Weierstrass function with the fundamental parallelogram Q . Let f k : s k → ℂ be functions, and let f k ′ ∈ L p k ( s k ), 1 ≤ k ≤ m , 1 < p k < ∞. Consider the Green function G ( z ) of the domain C \ ⋃ k = 1 m s k with the pole at infinity and define L h = def ζ : ζ ∈ C \ ⋃ k = 1 m s k , G ζ = log 1 + h , h > 0 ; ρ h ζ = def dist ζ , L h . Theorem . There exist polynomials P n ( u , v ), deg P n ≤ n , n = 1, 2, · · · , such that ∑ k = 1 m ∫ s k f k ζ - P n ℘ ζ , ℘ ′ ζ ρ 1 n ζ p k d ζ ≤ c .
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-024-07396-3