Polynomial Approximation by Doubly Periodic Weierstrass Functions on Disjoint Segments in the LP Metric
Let s k , 1 ≤ k ≤ m , m ≥ 2, be disjoint segments lying in a parallelogram Q . Denote by ℘ ( z ) a doubly periodic Weierstrass function with the fundamental parallelogram Q . Let f k : s k → ℂ be functions, and let f k ′ ∈ L p k ( s k ), 1 ≤ k ≤ m , 1 < p k < ∞. Consider the Green function G (...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2024, Vol.284 (6), p.894-903 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
s
k
, 1 ≤
k
≤
m
,
m
≥ 2, be disjoint segments lying in a parallelogram
Q
. Denote by
℘
(
z
) a doubly periodic Weierstrass function with the fundamental parallelogram
Q
. Let
f
k
:
s
k
→ ℂ be functions, and let
f
k
′
∈
L
p
k
(
s
k
), 1 ≤
k
≤
m
, 1 <
p
k
< ∞.
Consider the Green function
G
(
z
) of the domain
C
\
⋃
k
=
1
m
s
k
with the pole at infinity and define
L
h
=
def
ζ
:
ζ
∈
C
\
⋃
k
=
1
m
s
k
,
G
ζ
=
log
1
+
h
,
h
>
0
;
ρ
h
ζ
=
def
dist
ζ
,
L
h
.
Theorem
. There exist polynomials
P
n
(
u
,
v
), deg
P
n
≤
n
,
n
= 1, 2, · · · , such that
∑
k
=
1
m
∫
s
k
f
k
ζ
-
P
n
℘
ζ
,
℘
′
ζ
ρ
1
n
ζ
p
k
d
ζ
≤
c
. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-024-07396-3 |