Highest Weight Vectors in Plethysms, II
For an irreducible polynomial representation V of the general linear group GL n ( C ) , we realize its symmetric square S 2 ( V ) and its alternating square Λ 2 ( V ) as spaces of polynomial functions. In the case when V is labeled by a Young diagram with at most 2 rows, we describe explicitly all t...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2024-10, Vol.405 (10), Article 245 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For an irreducible polynomial representation
V
of the general linear group
GL
n
(
C
)
, we realize its symmetric square
S
2
(
V
)
and its alternating square
Λ
2
(
V
)
as spaces of polynomial functions. In the case when
V
is labeled by a Young diagram with at most 2 rows, we describe explicitly all the
GL
n
(
C
)
highest weight vectors which occur in
V
⊗
V
,
S
2
(
V
)
and
Λ
2
(
V
)
respectively. In particular, we obtain new description of the multiplicities in
S
2
(
V
)
and
Λ
2
(
V
)
. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-024-05115-2 |