Highest Weight Vectors in Plethysms, II

For an irreducible polynomial representation V of the general linear group GL n ( C ) , we realize its symmetric square S 2 ( V ) and its alternating square Λ 2 ( V ) as spaces of polynomial functions. In the case when V is labeled by a Young diagram with at most 2 rows, we describe explicitly all t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2024-10, Vol.405 (10), Article 245
Hauptverfasser: Kimoto, Kazufumi, Lee, Soo Teck
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For an irreducible polynomial representation V of the general linear group GL n ( C ) , we realize its symmetric square S 2 ( V ) and its alternating square Λ 2 ( V ) as spaces of polynomial functions. In the case when V is labeled by a Young diagram with at most 2 rows, we describe explicitly all the GL n ( C ) highest weight vectors which occur in V ⊗ V , S 2 ( V ) and Λ 2 ( V ) respectively. In particular, we obtain new description of the multiplicities in S 2 ( V ) and Λ 2 ( V ) .
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-024-05115-2