Classification of Fault Severity in Induction Machine Systems Based on Temporal Convolutions and Recurrent Networks
Detection and severity identification of mechanical and electrical faults by means of noninvasive methods such as electrical signatures of induction machine have attracted much attention in recent years. Since operating conditions of machines and severity of faults in incipient stages influence the...
Gespeichert in:
Veröffentlicht in: | International transactions on electrical energy systems 2022-02, Vol.2022, p.1-13 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Detection and severity identification of mechanical and electrical faults by means of noninvasive methods such as electrical signatures of induction machine have attracted much attention in recent years. Since operating conditions of machines and severity of faults in incipient stages influence the amplitude of fault index in the fault detection process, diagnosing fault occurrence and severity can be more complicated. In this study, an efficient method for fault detection and classification in induction machine based on deep neural networks is introduced. The introduced method applies the long short-term memory (LSTM) and fully convolutional neural networks (FCNs) in a conjoined manner. The authors use the FCN architecture for feature extraction from the time-series signal and augment it with LSTM to improve classification performance. This structure has not been previously applied for fault severity detection in induction machine systems. The authors avoid manual feature engineering and, by eliminating the preprocessing phase, directly use time series of electrical signals for fault detection and classifications. The experimental results have been carried out in different fault severities and loads. The analysis of the results and comparison with other deep and classical methods show that the faulty cases can be separated based on severity and load levels with a high accuracy (98.92%), which shows that the adopted architecture is successful in automatically extracting discriminative features from the signal. |
---|---|
ISSN: | 2050-7038 2050-7038 |
DOI: | 10.1155/2022/4224356 |