Restraining unfavorable phases via reduced spatial hindrance of ultra small-sized molecules to enable high-performance quasi-two-dimensional perovskite solar cells

Targeting the problem of unfavorable phases caused by self-assembled multi-quantum well structures in quasi-two-dimensional (quasi-2D) perovskite films, we propose a facile approach by utilizing a series of small molecules with different spatial hindrance to suppress low- n phases and comprehensivel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-10, Vol.12 (39), p.26586-26595
Hauptverfasser: Li, Dengxue, Rao, Shiyu, Hu, Biao, Du, Canqiang, Hong, Jiajie, Hu, Xiaotian, Chen, Yiwang, Hu, Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26595
container_issue 39
container_start_page 26586
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Li, Dengxue
Rao, Shiyu
Hu, Biao
Du, Canqiang
Hong, Jiajie
Hu, Xiaotian
Chen, Yiwang
Hu, Ting
description Targeting the problem of unfavorable phases caused by self-assembled multi-quantum well structures in quasi-two-dimensional (quasi-2D) perovskite films, we propose a facile approach by utilizing a series of small molecules with different spatial hindrance to suppress low- n phases and comprehensively explore the underlying regulatory kinetics mechanisms. The size effect enables smaller molecules to engage more intimately with Pb 2+ sites, fortifying the bond strength between the interacting species. Thus, the deployment of ultra small methylamine formate (MAFA) engenders more potent interactions, which in turn are likely to exert a beneficial influence on the assembly of quantum well structures. Upon the optimization of the crystalline growth path, an increased concentration of high- n phases is obtained in the resultant quasi-2D perovskite films. The significant reduction in charge-transfer barriers and defects leads to a remarkable improvement in carrier transport and suppressed non-radiative recombination. Therefore, an optimum PCE of 21.13% is achieved for MAFA-based devices. Additionally, the unencapsulated MAFA-based devices can maintain over 92.6% of their initial efficiency after aging in air at room temperature at 85% RH for 1000 h. Meanwhile, the MAFA-based devices retain 90% of their initial PCE at 75 °C in air with 40 ± 5% RH for 225 h.
doi_str_mv 10.1039/D4TA05004E
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3114101869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114101869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-1b05e74abd9361690cdeb59839b032384492e523538af6d87e6f18c6b7665d593</originalsourceid><addsrcrecordid>eNpFkV9LwzAUxYsoOOZe_AQB34Rq0rRZ8jjm_AMDQeZzSdvbLTNtutx2ol_HL2rmRO_LPQ-_c7jcE0WXjN4wytXtXbqa0YzSdHESjZKg4mmqxOmflvI8miBuaRhJqVBqFH29APZem9a0azK0td47rwsLpNtoBCR7o4mHaiihItjp3mhLNqatvG5LIK4mgw12go22NkbzGbDGWSgHG8y9I9D-pG3MehN34Gvnmx_nbtBo4v7dxZVpoEXj2pAcCLfHN9MDQWe1JyVYixfRWa0twuR3j6PX-8Vq_hgvnx-e5rNlXLJU9jEraAbTVBeV4oIJRcsKikxJrgrKEy7TVCWQJTzjUteiklMQNZOlKKZCZFWm-Di6OuZ23u2G8Jd86wYf7sKcM5YyyqQ4UNdHqvQO0UOdd9402n_kjOaHHvL_Hvg3EwR9yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114101869</pqid></control><display><type>article</type><title>Restraining unfavorable phases via reduced spatial hindrance of ultra small-sized molecules to enable high-performance quasi-two-dimensional perovskite solar cells</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Dengxue ; Rao, Shiyu ; Hu, Biao ; Du, Canqiang ; Hong, Jiajie ; Hu, Xiaotian ; Chen, Yiwang ; Hu, Ting</creator><creatorcontrib>Li, Dengxue ; Rao, Shiyu ; Hu, Biao ; Du, Canqiang ; Hong, Jiajie ; Hu, Xiaotian ; Chen, Yiwang ; Hu, Ting</creatorcontrib><description>Targeting the problem of unfavorable phases caused by self-assembled multi-quantum well structures in quasi-two-dimensional (quasi-2D) perovskite films, we propose a facile approach by utilizing a series of small molecules with different spatial hindrance to suppress low- n phases and comprehensively explore the underlying regulatory kinetics mechanisms. The size effect enables smaller molecules to engage more intimately with Pb 2+ sites, fortifying the bond strength between the interacting species. Thus, the deployment of ultra small methylamine formate (MAFA) engenders more potent interactions, which in turn are likely to exert a beneficial influence on the assembly of quantum well structures. Upon the optimization of the crystalline growth path, an increased concentration of high- n phases is obtained in the resultant quasi-2D perovskite films. The significant reduction in charge-transfer barriers and defects leads to a remarkable improvement in carrier transport and suppressed non-radiative recombination. Therefore, an optimum PCE of 21.13% is achieved for MAFA-based devices. Additionally, the unencapsulated MAFA-based devices can maintain over 92.6% of their initial efficiency after aging in air at room temperature at 85% RH for 1000 h. Meanwhile, the MAFA-based devices retain 90% of their initial PCE at 75 °C in air with 40 ± 5% RH for 225 h.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D4TA05004E</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Air temperature ; Bonding strength ; Carrier recombination ; Carrier transport ; Chemical bonds ; Crystal defects ; Current carriers ; Lead ; Methylamine ; Multi Quantum Wells ; Perovskites ; Phases ; Photovoltaic cells ; Radiative recombination ; Room temperature ; Self-assembly ; Size effects ; Solar cells</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-10, Vol.12 (39), p.26586-26595</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-1b05e74abd9361690cdeb59839b032384492e523538af6d87e6f18c6b7665d593</cites><orcidid>0000-0003-4709-7623 ; 0000-0001-5261-9858 ; 0000-0001-5483-8800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Li, Dengxue</creatorcontrib><creatorcontrib>Rao, Shiyu</creatorcontrib><creatorcontrib>Hu, Biao</creatorcontrib><creatorcontrib>Du, Canqiang</creatorcontrib><creatorcontrib>Hong, Jiajie</creatorcontrib><creatorcontrib>Hu, Xiaotian</creatorcontrib><creatorcontrib>Chen, Yiwang</creatorcontrib><creatorcontrib>Hu, Ting</creatorcontrib><title>Restraining unfavorable phases via reduced spatial hindrance of ultra small-sized molecules to enable high-performance quasi-two-dimensional perovskite solar cells</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Targeting the problem of unfavorable phases caused by self-assembled multi-quantum well structures in quasi-two-dimensional (quasi-2D) perovskite films, we propose a facile approach by utilizing a series of small molecules with different spatial hindrance to suppress low- n phases and comprehensively explore the underlying regulatory kinetics mechanisms. The size effect enables smaller molecules to engage more intimately with Pb 2+ sites, fortifying the bond strength between the interacting species. Thus, the deployment of ultra small methylamine formate (MAFA) engenders more potent interactions, which in turn are likely to exert a beneficial influence on the assembly of quantum well structures. Upon the optimization of the crystalline growth path, an increased concentration of high- n phases is obtained in the resultant quasi-2D perovskite films. The significant reduction in charge-transfer barriers and defects leads to a remarkable improvement in carrier transport and suppressed non-radiative recombination. Therefore, an optimum PCE of 21.13% is achieved for MAFA-based devices. Additionally, the unencapsulated MAFA-based devices can maintain over 92.6% of their initial efficiency after aging in air at room temperature at 85% RH for 1000 h. Meanwhile, the MAFA-based devices retain 90% of their initial PCE at 75 °C in air with 40 ± 5% RH for 225 h.</description><subject>Air temperature</subject><subject>Bonding strength</subject><subject>Carrier recombination</subject><subject>Carrier transport</subject><subject>Chemical bonds</subject><subject>Crystal defects</subject><subject>Current carriers</subject><subject>Lead</subject><subject>Methylamine</subject><subject>Multi Quantum Wells</subject><subject>Perovskites</subject><subject>Phases</subject><subject>Photovoltaic cells</subject><subject>Radiative recombination</subject><subject>Room temperature</subject><subject>Self-assembly</subject><subject>Size effects</subject><subject>Solar cells</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkV9LwzAUxYsoOOZe_AQB34Rq0rRZ8jjm_AMDQeZzSdvbLTNtutx2ol_HL2rmRO_LPQ-_c7jcE0WXjN4wytXtXbqa0YzSdHESjZKg4mmqxOmflvI8miBuaRhJqVBqFH29APZem9a0azK0td47rwsLpNtoBCR7o4mHaiihItjp3mhLNqatvG5LIK4mgw12go22NkbzGbDGWSgHG8y9I9D-pG3MehN34Gvnmx_nbtBo4v7dxZVpoEXj2pAcCLfHN9MDQWe1JyVYixfRWa0twuR3j6PX-8Vq_hgvnx-e5rNlXLJU9jEraAbTVBeV4oIJRcsKikxJrgrKEy7TVCWQJTzjUteiklMQNZOlKKZCZFWm-Di6OuZ23u2G8Jd86wYf7sKcM5YyyqQ4UNdHqvQO0UOdd9402n_kjOaHHvL_Hvg3EwR9yg</recordid><startdate>20241008</startdate><enddate>20241008</enddate><creator>Li, Dengxue</creator><creator>Rao, Shiyu</creator><creator>Hu, Biao</creator><creator>Du, Canqiang</creator><creator>Hong, Jiajie</creator><creator>Hu, Xiaotian</creator><creator>Chen, Yiwang</creator><creator>Hu, Ting</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4709-7623</orcidid><orcidid>https://orcid.org/0000-0001-5261-9858</orcidid><orcidid>https://orcid.org/0000-0001-5483-8800</orcidid></search><sort><creationdate>20241008</creationdate><title>Restraining unfavorable phases via reduced spatial hindrance of ultra small-sized molecules to enable high-performance quasi-two-dimensional perovskite solar cells</title><author>Li, Dengxue ; Rao, Shiyu ; Hu, Biao ; Du, Canqiang ; Hong, Jiajie ; Hu, Xiaotian ; Chen, Yiwang ; Hu, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-1b05e74abd9361690cdeb59839b032384492e523538af6d87e6f18c6b7665d593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air temperature</topic><topic>Bonding strength</topic><topic>Carrier recombination</topic><topic>Carrier transport</topic><topic>Chemical bonds</topic><topic>Crystal defects</topic><topic>Current carriers</topic><topic>Lead</topic><topic>Methylamine</topic><topic>Multi Quantum Wells</topic><topic>Perovskites</topic><topic>Phases</topic><topic>Photovoltaic cells</topic><topic>Radiative recombination</topic><topic>Room temperature</topic><topic>Self-assembly</topic><topic>Size effects</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dengxue</creatorcontrib><creatorcontrib>Rao, Shiyu</creatorcontrib><creatorcontrib>Hu, Biao</creatorcontrib><creatorcontrib>Du, Canqiang</creatorcontrib><creatorcontrib>Hong, Jiajie</creatorcontrib><creatorcontrib>Hu, Xiaotian</creatorcontrib><creatorcontrib>Chen, Yiwang</creatorcontrib><creatorcontrib>Hu, Ting</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dengxue</au><au>Rao, Shiyu</au><au>Hu, Biao</au><au>Du, Canqiang</au><au>Hong, Jiajie</au><au>Hu, Xiaotian</au><au>Chen, Yiwang</au><au>Hu, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Restraining unfavorable phases via reduced spatial hindrance of ultra small-sized molecules to enable high-performance quasi-two-dimensional perovskite solar cells</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-10-08</date><risdate>2024</risdate><volume>12</volume><issue>39</issue><spage>26586</spage><epage>26595</epage><pages>26586-26595</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Targeting the problem of unfavorable phases caused by self-assembled multi-quantum well structures in quasi-two-dimensional (quasi-2D) perovskite films, we propose a facile approach by utilizing a series of small molecules with different spatial hindrance to suppress low- n phases and comprehensively explore the underlying regulatory kinetics mechanisms. The size effect enables smaller molecules to engage more intimately with Pb 2+ sites, fortifying the bond strength between the interacting species. Thus, the deployment of ultra small methylamine formate (MAFA) engenders more potent interactions, which in turn are likely to exert a beneficial influence on the assembly of quantum well structures. Upon the optimization of the crystalline growth path, an increased concentration of high- n phases is obtained in the resultant quasi-2D perovskite films. The significant reduction in charge-transfer barriers and defects leads to a remarkable improvement in carrier transport and suppressed non-radiative recombination. Therefore, an optimum PCE of 21.13% is achieved for MAFA-based devices. Additionally, the unencapsulated MAFA-based devices can maintain over 92.6% of their initial efficiency after aging in air at room temperature at 85% RH for 1000 h. Meanwhile, the MAFA-based devices retain 90% of their initial PCE at 75 °C in air with 40 ± 5% RH for 225 h.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D4TA05004E</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4709-7623</orcidid><orcidid>https://orcid.org/0000-0001-5261-9858</orcidid><orcidid>https://orcid.org/0000-0001-5483-8800</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-10, Vol.12 (39), p.26586-26595
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3114101869
source Royal Society Of Chemistry Journals 2008-
subjects Air temperature
Bonding strength
Carrier recombination
Carrier transport
Chemical bonds
Crystal defects
Current carriers
Lead
Methylamine
Multi Quantum Wells
Perovskites
Phases
Photovoltaic cells
Radiative recombination
Room temperature
Self-assembly
Size effects
Solar cells
title Restraining unfavorable phases via reduced spatial hindrance of ultra small-sized molecules to enable high-performance quasi-two-dimensional perovskite solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Restraining%20unfavorable%20phases%20via%20reduced%20spatial%20hindrance%20of%20ultra%20small-sized%20molecules%20to%20enable%20high-performance%20quasi-two-dimensional%20perovskite%20solar%20cells&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Li,%20Dengxue&rft.date=2024-10-08&rft.volume=12&rft.issue=39&rft.spage=26586&rft.epage=26595&rft.pages=26586-26595&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D4TA05004E&rft_dat=%3Cproquest_cross%3E3114101869%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114101869&rft_id=info:pmid/&rfr_iscdi=true