Restraining unfavorable phases via reduced spatial hindrance of ultra small-sized molecules to enable high-performance quasi-two-dimensional perovskite solar cells

Targeting the problem of unfavorable phases caused by self-assembled multi-quantum well structures in quasi-two-dimensional (quasi-2D) perovskite films, we propose a facile approach by utilizing a series of small molecules with different spatial hindrance to suppress low- n phases and comprehensivel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-10, Vol.12 (39), p.26586-26595
Hauptverfasser: Li, Dengxue, Rao, Shiyu, Hu, Biao, Du, Canqiang, Hong, Jiajie, Hu, Xiaotian, Chen, Yiwang, Hu, Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Targeting the problem of unfavorable phases caused by self-assembled multi-quantum well structures in quasi-two-dimensional (quasi-2D) perovskite films, we propose a facile approach by utilizing a series of small molecules with different spatial hindrance to suppress low- n phases and comprehensively explore the underlying regulatory kinetics mechanisms. The size effect enables smaller molecules to engage more intimately with Pb 2+ sites, fortifying the bond strength between the interacting species. Thus, the deployment of ultra small methylamine formate (MAFA) engenders more potent interactions, which in turn are likely to exert a beneficial influence on the assembly of quantum well structures. Upon the optimization of the crystalline growth path, an increased concentration of high- n phases is obtained in the resultant quasi-2D perovskite films. The significant reduction in charge-transfer barriers and defects leads to a remarkable improvement in carrier transport and suppressed non-radiative recombination. Therefore, an optimum PCE of 21.13% is achieved for MAFA-based devices. Additionally, the unencapsulated MAFA-based devices can maintain over 92.6% of their initial efficiency after aging in air at room temperature at 85% RH for 1000 h. Meanwhile, the MAFA-based devices retain 90% of their initial PCE at 75 °C in air with 40 ± 5% RH for 225 h.
ISSN:2050-7488
2050-7496
DOI:10.1039/D4TA05004E