The Non-Edge-to-Edge Tilings of the Sphere by Regular Polygons

In 1966, Zalgaller completed the task of determining all edge-to-edge tilings of the sphere by regular spherical polygons, proving that the only possibilities are the Platonic tilings, the Archimedean tilings, the Johnson tilings, the prism and anti-prism tilings and two tiles sharing their boundari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2024-10, Vol.72 (3), p.1029-1085
Hauptverfasser: Adams, Colin, Edgar, Cameron, Hollander, Peter, Jacoby, Liza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1966, Zalgaller completed the task of determining all edge-to-edge tilings of the sphere by regular spherical polygons, proving that the only possibilities are the Platonic tilings, the Archimedean tilings, the Johnson tilings, the prism and anti-prism tilings and two tiles sharing their boundaries. We determine all non-edge-to-edge tilings of the sphere by regular spherical polygons of three or more sides, showing there are five continuous families of kaleidoscope tilings, fifteen continuous families of 2-hemisphere tilings, four lunar tilings, five sporadic tilings, five composed tilings and one magic triangle tiling.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-024-00689-z