Some Hölder-logarithmic estimates on Hardy-Sobolev spaces
We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces H k,p ( G ), where k ∈ ℕ*, 1 ⩽ p ⩽ ∞ and G is either the open unit disk ⅅ or the annular domain G s , 0 < s < 1 of the complex space ℂ. More precisely, we study the behavior on the interior of G of any funct...
Gespeichert in:
Veröffentlicht in: | Czechoslovak Mathematical Journal 2024, Vol.74 (3), p.787-800 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces
H
k,p
(
G
), where
k
∈ ℕ*, 1 ⩽
p
⩽ ∞ and
G
is either the open unit disk ⅅ or the annular domain
G
s
, 0 <
s
< 1 of the complex space ℂ. More precisely, we study the behavior on the interior of
G
of any function
f
belonging to the unit ball of the Hardy-Sobolev spaces
H
k,p
(
G
) from its behavior on any open connected subset
I
of the boundary ∂
G
of
G
with respect to the
L
1
-norm. Our results can be viewed as an improvement and generalization of those established in S. Chaabane, I. Feki (2009), I. Feki, H. Nfata, F. Wielonsky (2012), I. Feki (2013), I. Feki, H. Nfata (2014). As an application, we establish a logarithmic stability results for the Cauchy problem of the identification of Robin’s coefficient by boundary measurements. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.21136/CMJ.2024.0552-23 |