A Novel Approximation Algorithm for the Shortest Vector Problem

Finding the shortest vector in a lattice is a NP-hard problem. The best known approximation algorithm for this problem is LLL algorithm with the approximation factor of \alpha ^{\frac {n-1}{2}} , \alpha \geq \frac {4}{3} , which is not a good approximation factor. This work proposes a new polynomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.141026-141031
1. Verfasser: Ajitha Shenoy, K. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Finding the shortest vector in a lattice is a NP-hard problem. The best known approximation algorithm for this problem is LLL algorithm with the approximation factor of \alpha ^{\frac {n-1}{2}} , \alpha \geq \frac {4}{3} , which is not a good approximation factor. This work proposes a new polynomial time approximation algorithm for the shortest lattice vector problem. The proposed method makes use of only integer arithmetic and does not require Gram-Schmidt orthogonal basis for generating reduced basis. The proposed method is able to obtain an approximation factor of \frac {1}{(1-\delta)} , where 0 \leq \delta \lt 1 .
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2024.3469368