Linkage of Pfister forms over semi-global fields

We study linkage of ( d + 1 ) -fold quadratic Pfister forms over function fields in one variable over a henselian valued field of 2-cohomological dimension d . Specifically, we characterise this property in terms of linkage of quadratic Pfister forms over function fields over the residue field of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2024-11, Vol.308 (3), Article 41
1. Verfasser: Daans, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Mathematische Zeitschrift
container_volume 308
creator Daans, Nicolas
description We study linkage of ( d + 1 ) -fold quadratic Pfister forms over function fields in one variable over a henselian valued field of 2-cohomological dimension d . Specifically, we characterise this property in terms of linkage of quadratic Pfister forms over function fields over the residue field of the henselian valued field; in full generality in characteristic different from 2, and for most complete discretely valued fields in characteristic 2. As an application, we obtain a proof that ( d + 2 ) -fold quadratic Pfister forms over function fields in one variable over a d -dimensional higher local field are linked.
doi_str_mv 10.1007/s00209-024-03598-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3112837803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112837803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-ea3d586e9b1ecc63281c707f8f9581bdafc961ce9bad3a275664f377a24783403</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GrAdfQmN5lkllLUCgVd6DqkmaRMnU5qMhV8e6MjuHN1D5yfCx8hlwyuGYC6yQAcGgpcUEDZaMqPyIwJ5JRpjsdkVnxJpVbilJzlvAUophIzAqtueLMbX8VQPYcujz5VIaZdruJHkdnvOrrp49r2Veh83-ZzchJsn_3F752T1_u7l8WSrp4eHhe3K-q4ECP1Flupa9-smXeuRq6ZU6CCDo3UbN3a4JqaueLbFi1Xsq5FQKUsF0qjAJyTq2l3n-L7wefRbOMhDeWlQca4RqUBS4pPKZdizskHs0_dzqZPw8B8kzETGVPImB8yhpcSTqVcwsPGp7_pf1pflFhkow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112837803</pqid></control><display><type>article</type><title>Linkage of Pfister forms over semi-global fields</title><source>SpringerLink Journals - AutoHoldings</source><creator>Daans, Nicolas</creator><creatorcontrib>Daans, Nicolas</creatorcontrib><description>We study linkage of ( d + 1 ) -fold quadratic Pfister forms over function fields in one variable over a henselian valued field of 2-cohomological dimension d . Specifically, we characterise this property in terms of linkage of quadratic Pfister forms over function fields over the residue field of the henselian valued field; in full generality in characteristic different from 2, and for most complete discretely valued fields in characteristic 2. As an application, we obtain a proof that ( d + 2 ) -fold quadratic Pfister forms over function fields in one variable over a d -dimensional higher local field are linked.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-024-03598-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische Zeitschrift, 2024-11, Vol.308 (3), Article 41</ispartof><rights>The Author(s) 2024. corrected publication 2024</rights><rights>The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-ea3d586e9b1ecc63281c707f8f9581bdafc961ce9bad3a275664f377a24783403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-024-03598-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-024-03598-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Daans, Nicolas</creatorcontrib><title>Linkage of Pfister forms over semi-global fields</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We study linkage of ( d + 1 ) -fold quadratic Pfister forms over function fields in one variable over a henselian valued field of 2-cohomological dimension d . Specifically, we characterise this property in terms of linkage of quadratic Pfister forms over function fields over the residue field of the henselian valued field; in full generality in characteristic different from 2, and for most complete discretely valued fields in characteristic 2. As an application, we obtain a proof that ( d + 2 ) -fold quadratic Pfister forms over function fields in one variable over a d -dimensional higher local field are linked.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4GrAdfQmN5lkllLUCgVd6DqkmaRMnU5qMhV8e6MjuHN1D5yfCx8hlwyuGYC6yQAcGgpcUEDZaMqPyIwJ5JRpjsdkVnxJpVbilJzlvAUophIzAqtueLMbX8VQPYcujz5VIaZdruJHkdnvOrrp49r2Veh83-ZzchJsn_3F752T1_u7l8WSrp4eHhe3K-q4ECP1Flupa9-smXeuRq6ZU6CCDo3UbN3a4JqaueLbFi1Xsq5FQKUsF0qjAJyTq2l3n-L7wefRbOMhDeWlQca4RqUBS4pPKZdizskHs0_dzqZPw8B8kzETGVPImB8yhpcSTqVcwsPGp7_pf1pflFhkow</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Daans, Nicolas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241101</creationdate><title>Linkage of Pfister forms over semi-global fields</title><author>Daans, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-ea3d586e9b1ecc63281c707f8f9581bdafc961ce9bad3a275664f377a24783403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daans, Nicolas</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daans, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linkage of Pfister forms over semi-global fields</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>308</volume><issue>3</issue><artnum>41</artnum><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We study linkage of ( d + 1 ) -fold quadratic Pfister forms over function fields in one variable over a henselian valued field of 2-cohomological dimension d . Specifically, we characterise this property in terms of linkage of quadratic Pfister forms over function fields over the residue field of the henselian valued field; in full generality in characteristic different from 2, and for most complete discretely valued fields in characteristic 2. As an application, we obtain a proof that ( d + 2 ) -fold quadratic Pfister forms over function fields in one variable over a d -dimensional higher local field are linked.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-024-03598-2</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2024-11, Vol.308 (3), Article 41
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_3112837803
source SpringerLink Journals - AutoHoldings
subjects Mathematics
Mathematics and Statistics
title Linkage of Pfister forms over semi-global fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linkage%20of%20Pfister%20forms%20over%20semi-global%20fields&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Daans,%20Nicolas&rft.date=2024-11-01&rft.volume=308&rft.issue=3&rft.artnum=41&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-024-03598-2&rft_dat=%3Cproquest_cross%3E3112837803%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112837803&rft_id=info:pmid/&rfr_iscdi=true