Linkage of Pfister forms over semi-global fields

We study linkage of ( d + 1 ) -fold quadratic Pfister forms over function fields in one variable over a henselian valued field of 2-cohomological dimension d . Specifically, we characterise this property in terms of linkage of quadratic Pfister forms over function fields over the residue field of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2024-11, Vol.308 (3), Article 41
1. Verfasser: Daans, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study linkage of ( d + 1 ) -fold quadratic Pfister forms over function fields in one variable over a henselian valued field of 2-cohomological dimension d . Specifically, we characterise this property in terms of linkage of quadratic Pfister forms over function fields over the residue field of the henselian valued field; in full generality in characteristic different from 2, and for most complete discretely valued fields in characteristic 2. As an application, we obtain a proof that ( d + 2 ) -fold quadratic Pfister forms over function fields in one variable over a d -dimensional higher local field are linked.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-024-03598-2