Linkage of Pfister forms over semi-global fields
We study linkage of ( d + 1 ) -fold quadratic Pfister forms over function fields in one variable over a henselian valued field of 2-cohomological dimension d . Specifically, we characterise this property in terms of linkage of quadratic Pfister forms over function fields over the residue field of th...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2024-11, Vol.308 (3), Article 41 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study linkage of
(
d
+
1
)
-fold quadratic Pfister forms over function fields in one variable over a henselian valued field of 2-cohomological dimension
d
. Specifically, we characterise this property in terms of linkage of quadratic Pfister forms over function fields over the residue field of the henselian valued field; in full generality in characteristic different from 2, and for most complete discretely valued fields in characteristic 2. As an application, we obtain a proof that
(
d
+
2
)
-fold quadratic Pfister forms over function fields in one variable over a
d
-dimensional higher local field are linked. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-024-03598-2 |