The generalized Kelvin chain-based model for an orthotropic viscoelastic material
We propose a constitutive material model to describe the rheological (viscoelastic) mechanical response of timber. The viscoelastic model is based on the generalized Kelvin chain applied to the orthotropic material and is compared to the simple approach given by standards. The contribution of this s...
Gespeichert in:
Veröffentlicht in: | Mechanics of time-dependent materials 2024, Vol.28 (3), p.1639-1659 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a constitutive material model to describe the rheological (viscoelastic) mechanical response of timber. The viscoelastic model is based on the generalized Kelvin chain applied to the orthotropic material and is compared to the simple approach given by standards. The contribution of this study consists of the algorithmization of the viscoelastic material model of the material applied to the orthotropic constitutive law and implementation into the FEM solver. In the next step, the fitting of the input parameters of the Kelvin chain is described, and at least a material model benchmark and comparison to the approach given by standards were done. The standardized approach is based on the reduction of the material rigidity at the end of the loading period using a creep coefficient, whereas the loading history state variables are not considered when establishing the result for a specific time step. The paper presents the benefits of the rheological model. It also demonstrates the fitting algorithm based on particle swarm optimization and the least squares method, which are essential for the use of the generalized Kelvin chain model. The material model based on the orthotropic generalized Kelvin chain was implemented into the FEM solver for the shell elements. This material model was validated on the presented benchmark tasks, and the influence of the time step size on the accuracy of model results was analyzed. |
---|---|
ISSN: | 1385-2000 1573-2738 |
DOI: | 10.1007/s11043-024-09678-4 |