Revolutionizing Oxygen Evolution Reaction Catalysts: Efficient and Ultrastable Interstitial W‐Doped NiFe‐LDHs/MOFs through Controlled Topological Conversion of Metal‐Organic Frameworks

Although metal‐organic frameworks (MOFs) show promise as electrocatalysts due to their unique intrinsic features, their activity and stability often fall short. Herein, NiFe‐MOFs is used as a model to introduce group VIB metalates (Na2WO4, Na2CrO4, and Na2MoO4) into the topological conversion proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2024-10, Vol.14 (37), p.n/a
Hauptverfasser: Bao, Yiwei, Liang, Xiongyi, Zhang, Hao, Bu, Xiuming, Cai, ZiYan, Yang, Yikai, Yin, Di, Zhang, Yuxuan, Chen, Lijie, Yang, Cheng, Hu, Xiulan, Zeng, Xiao Cheng, Ho, Johnny C, Wang, Xianying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 37
container_start_page
container_title Advanced energy materials
container_volume 14
creator Bao, Yiwei
Liang, Xiongyi
Zhang, Hao
Bu, Xiuming
Cai, ZiYan
Yang, Yikai
Yin, Di
Zhang, Yuxuan
Chen, Lijie
Yang, Cheng
Hu, Xiulan
Zeng, Xiao Cheng
Ho, Johnny C
Wang, Xianying
description Although metal‐organic frameworks (MOFs) show promise as electrocatalysts due to their unique intrinsic features, their activity and stability often fall short. Herein, NiFe‐MOFs is used as a model to introduce group VIB metalates (Na2WO4, Na2CrO4, and Na2MoO4) into the topological conversion process of layer double hydroxide (LDHs)/MOFs, creating a series of interstitial VIB element‐doped LDHs/MOFs catalysts. The metalates engage in the alkaline hydrolysis process of MOF, generating LDHs on the MOF surface. Furthermore, altering the pH value in the reaction environment can modify the catalysts' morphology, dopant/LDHs content, and electronic structure. Consequently, the prepared interstitial W‐doped NiFe‐LDHs/MOFs catalyst displays superior catalytic performance, with overpotentials of only 250 mV at 500 mA cm−2. Moreover, a homemade anion‐exchange membrane water electrolysis (AEMWE) system featuring the fabricated electrocatalyst as the anode can operate stably for 500 hours at 1 A cm−2. The exceptional catalytic activity and stability stem from optimized intermediate adsorption/desorption behavior and the unique LDHs/MOFs nanostructure. This work not only highlights the potential of the catalysts for practical applications but also offers a new design approach for modulating MOFs using an alkaline hydrolysis strategy. The Group VIB metalates are proven to engage in the alkaline hydrolysis process of metal‐organic frameworks (MOF), generating interstitial metal‐doped layered double hydroxide/MOF heterostructure. Altering the pH value in the reaction environment can further modify the morphology and composition. Consequently, the prepared catalyst displays superior catalytic performance in the anion‐exchange membrane water electrolysis system.
doi_str_mv 10.1002/aenm.202401909
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3112726151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112726151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2429-43a30f3064adcf725479189730144babdee06fa2639f985562500dbee6ebfdb3</originalsourceid><addsrcrecordid>eNqFkbtOIzEUhkcrkBYB7daWtk7wbSbxdigkgJQQKcpqy5Fn5nhicOxgO0CoeASeiIfhSXAIl3JPcy76v_MXf5b9IrhLMKYnEuyySzHlmAgsfmQHpCC8U_Q53vuaGf2ZHYdwjVNxQTBjB9nLDO6cWUftrH7UtkXTh00LFg0_r2gGsn4fBjJKswkx_EFDpXStwUYkbYP-muhliLIygC5tBB-ijloa9O_16fnMraBBV3oEaRmfXYSTyXQUUFx4t24XaOBs9M6YpJm7lTOu1XUi0_ku_dnaOoUmkJwTPvWttLpGIy-XcO_8TTjK9pU0AY4_-mE2Hw3ng4vOeHp-OTgdd2rKqehwJhlWDBdcNrXq0Zz3BOmLHsOE80pWDQAulKQFE0r087ygOcZNBVBApZqKHWa_d29X3t2uIcTy2q29TY4lI4T2aEFyklTdnar2LgQPqlx5vZR-UxJcblMqtymVXyklQOyAe21g8x91eTq8mnyzb3DNnXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112726151</pqid></control><display><type>article</type><title>Revolutionizing Oxygen Evolution Reaction Catalysts: Efficient and Ultrastable Interstitial W‐Doped NiFe‐LDHs/MOFs through Controlled Topological Conversion of Metal‐Organic Frameworks</title><source>Access via Wiley Online Library</source><creator>Bao, Yiwei ; Liang, Xiongyi ; Zhang, Hao ; Bu, Xiuming ; Cai, ZiYan ; Yang, Yikai ; Yin, Di ; Zhang, Yuxuan ; Chen, Lijie ; Yang, Cheng ; Hu, Xiulan ; Zeng, Xiao Cheng ; Ho, Johnny C ; Wang, Xianying</creator><creatorcontrib>Bao, Yiwei ; Liang, Xiongyi ; Zhang, Hao ; Bu, Xiuming ; Cai, ZiYan ; Yang, Yikai ; Yin, Di ; Zhang, Yuxuan ; Chen, Lijie ; Yang, Cheng ; Hu, Xiulan ; Zeng, Xiao Cheng ; Ho, Johnny C ; Wang, Xianying</creatorcontrib><description>Although metal‐organic frameworks (MOFs) show promise as electrocatalysts due to their unique intrinsic features, their activity and stability often fall short. Herein, NiFe‐MOFs is used as a model to introduce group VIB metalates (Na2WO4, Na2CrO4, and Na2MoO4) into the topological conversion process of layer double hydroxide (LDHs)/MOFs, creating a series of interstitial VIB element‐doped LDHs/MOFs catalysts. The metalates engage in the alkaline hydrolysis process of MOF, generating LDHs on the MOF surface. Furthermore, altering the pH value in the reaction environment can modify the catalysts' morphology, dopant/LDHs content, and electronic structure. Consequently, the prepared interstitial W‐doped NiFe‐LDHs/MOFs catalyst displays superior catalytic performance, with overpotentials of only 250 mV at 500 mA cm−2. Moreover, a homemade anion‐exchange membrane water electrolysis (AEMWE) system featuring the fabricated electrocatalyst as the anode can operate stably for 500 hours at 1 A cm−2. The exceptional catalytic activity and stability stem from optimized intermediate adsorption/desorption behavior and the unique LDHs/MOFs nanostructure. This work not only highlights the potential of the catalysts for practical applications but also offers a new design approach for modulating MOFs using an alkaline hydrolysis strategy. The Group VIB metalates are proven to engage in the alkaline hydrolysis process of metal‐organic frameworks (MOF), generating interstitial metal‐doped layered double hydroxide/MOF heterostructure. Altering the pH value in the reaction environment can further modify the morphology and composition. Consequently, the prepared catalyst displays superior catalytic performance in the anion‐exchange membrane water electrolysis system.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202401909</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anion exchanging ; Catalysts ; Catalytic activity ; electrocatalyst ; Electrocatalysts ; Electrolysis ; Electronic structure ; group VIB metalate ; Hydrolysis ; Intermetallic compounds ; Iron compounds ; Metal-organic frameworks ; metal‐organic framework ; Nickel compounds ; oxygen evolution reaction ; Oxygen evolution reactions ; Sodium chromate ; Sodium molybdate ; Stability ; topological conversion ; Topology</subject><ispartof>Advanced energy materials, 2024-10, Vol.14 (37), p.n/a</ispartof><rights>2024 The Author(s). Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2429-43a30f3064adcf725479189730144babdee06fa2639f985562500dbee6ebfdb3</cites><orcidid>0000-0003-3000-8794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202401909$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202401909$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bao, Yiwei</creatorcontrib><creatorcontrib>Liang, Xiongyi</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Bu, Xiuming</creatorcontrib><creatorcontrib>Cai, ZiYan</creatorcontrib><creatorcontrib>Yang, Yikai</creatorcontrib><creatorcontrib>Yin, Di</creatorcontrib><creatorcontrib>Zhang, Yuxuan</creatorcontrib><creatorcontrib>Chen, Lijie</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>Hu, Xiulan</creatorcontrib><creatorcontrib>Zeng, Xiao Cheng</creatorcontrib><creatorcontrib>Ho, Johnny C</creatorcontrib><creatorcontrib>Wang, Xianying</creatorcontrib><title>Revolutionizing Oxygen Evolution Reaction Catalysts: Efficient and Ultrastable Interstitial W‐Doped NiFe‐LDHs/MOFs through Controlled Topological Conversion of Metal‐Organic Frameworks</title><title>Advanced energy materials</title><description>Although metal‐organic frameworks (MOFs) show promise as electrocatalysts due to their unique intrinsic features, their activity and stability often fall short. Herein, NiFe‐MOFs is used as a model to introduce group VIB metalates (Na2WO4, Na2CrO4, and Na2MoO4) into the topological conversion process of layer double hydroxide (LDHs)/MOFs, creating a series of interstitial VIB element‐doped LDHs/MOFs catalysts. The metalates engage in the alkaline hydrolysis process of MOF, generating LDHs on the MOF surface. Furthermore, altering the pH value in the reaction environment can modify the catalysts' morphology, dopant/LDHs content, and electronic structure. Consequently, the prepared interstitial W‐doped NiFe‐LDHs/MOFs catalyst displays superior catalytic performance, with overpotentials of only 250 mV at 500 mA cm−2. Moreover, a homemade anion‐exchange membrane water electrolysis (AEMWE) system featuring the fabricated electrocatalyst as the anode can operate stably for 500 hours at 1 A cm−2. The exceptional catalytic activity and stability stem from optimized intermediate adsorption/desorption behavior and the unique LDHs/MOFs nanostructure. This work not only highlights the potential of the catalysts for practical applications but also offers a new design approach for modulating MOFs using an alkaline hydrolysis strategy. The Group VIB metalates are proven to engage in the alkaline hydrolysis process of metal‐organic frameworks (MOF), generating interstitial metal‐doped layered double hydroxide/MOF heterostructure. Altering the pH value in the reaction environment can further modify the morphology and composition. Consequently, the prepared catalyst displays superior catalytic performance in the anion‐exchange membrane water electrolysis system.</description><subject>Anion exchanging</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>electrocatalyst</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Electronic structure</subject><subject>group VIB metalate</subject><subject>Hydrolysis</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>Metal-organic frameworks</subject><subject>metal‐organic framework</subject><subject>Nickel compounds</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Sodium chromate</subject><subject>Sodium molybdate</subject><subject>Stability</subject><subject>topological conversion</subject><subject>Topology</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkbtOIzEUhkcrkBYB7daWtk7wbSbxdigkgJQQKcpqy5Fn5nhicOxgO0CoeASeiIfhSXAIl3JPcy76v_MXf5b9IrhLMKYnEuyySzHlmAgsfmQHpCC8U_Q53vuaGf2ZHYdwjVNxQTBjB9nLDO6cWUftrH7UtkXTh00LFg0_r2gGsn4fBjJKswkx_EFDpXStwUYkbYP-muhliLIygC5tBB-ijloa9O_16fnMraBBV3oEaRmfXYSTyXQUUFx4t24XaOBs9M6YpJm7lTOu1XUi0_ku_dnaOoUmkJwTPvWttLpGIy-XcO_8TTjK9pU0AY4_-mE2Hw3ng4vOeHp-OTgdd2rKqehwJhlWDBdcNrXq0Zz3BOmLHsOE80pWDQAulKQFE0r087ygOcZNBVBApZqKHWa_d29X3t2uIcTy2q29TY4lI4T2aEFyklTdnar2LgQPqlx5vZR-UxJcblMqtymVXyklQOyAe21g8x91eTq8mnyzb3DNnXY</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Bao, Yiwei</creator><creator>Liang, Xiongyi</creator><creator>Zhang, Hao</creator><creator>Bu, Xiuming</creator><creator>Cai, ZiYan</creator><creator>Yang, Yikai</creator><creator>Yin, Di</creator><creator>Zhang, Yuxuan</creator><creator>Chen, Lijie</creator><creator>Yang, Cheng</creator><creator>Hu, Xiulan</creator><creator>Zeng, Xiao Cheng</creator><creator>Ho, Johnny C</creator><creator>Wang, Xianying</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3000-8794</orcidid></search><sort><creationdate>20241001</creationdate><title>Revolutionizing Oxygen Evolution Reaction Catalysts: Efficient and Ultrastable Interstitial W‐Doped NiFe‐LDHs/MOFs through Controlled Topological Conversion of Metal‐Organic Frameworks</title><author>Bao, Yiwei ; Liang, Xiongyi ; Zhang, Hao ; Bu, Xiuming ; Cai, ZiYan ; Yang, Yikai ; Yin, Di ; Zhang, Yuxuan ; Chen, Lijie ; Yang, Cheng ; Hu, Xiulan ; Zeng, Xiao Cheng ; Ho, Johnny C ; Wang, Xianying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2429-43a30f3064adcf725479189730144babdee06fa2639f985562500dbee6ebfdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anion exchanging</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>electrocatalyst</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Electronic structure</topic><topic>group VIB metalate</topic><topic>Hydrolysis</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>Metal-organic frameworks</topic><topic>metal‐organic framework</topic><topic>Nickel compounds</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Sodium chromate</topic><topic>Sodium molybdate</topic><topic>Stability</topic><topic>topological conversion</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Yiwei</creatorcontrib><creatorcontrib>Liang, Xiongyi</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Bu, Xiuming</creatorcontrib><creatorcontrib>Cai, ZiYan</creatorcontrib><creatorcontrib>Yang, Yikai</creatorcontrib><creatorcontrib>Yin, Di</creatorcontrib><creatorcontrib>Zhang, Yuxuan</creatorcontrib><creatorcontrib>Chen, Lijie</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>Hu, Xiulan</creatorcontrib><creatorcontrib>Zeng, Xiao Cheng</creatorcontrib><creatorcontrib>Ho, Johnny C</creatorcontrib><creatorcontrib>Wang, Xianying</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Yiwei</au><au>Liang, Xiongyi</au><au>Zhang, Hao</au><au>Bu, Xiuming</au><au>Cai, ZiYan</au><au>Yang, Yikai</au><au>Yin, Di</au><au>Zhang, Yuxuan</au><au>Chen, Lijie</au><au>Yang, Cheng</au><au>Hu, Xiulan</au><au>Zeng, Xiao Cheng</au><au>Ho, Johnny C</au><au>Wang, Xianying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revolutionizing Oxygen Evolution Reaction Catalysts: Efficient and Ultrastable Interstitial W‐Doped NiFe‐LDHs/MOFs through Controlled Topological Conversion of Metal‐Organic Frameworks</atitle><jtitle>Advanced energy materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>37</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Although metal‐organic frameworks (MOFs) show promise as electrocatalysts due to their unique intrinsic features, their activity and stability often fall short. Herein, NiFe‐MOFs is used as a model to introduce group VIB metalates (Na2WO4, Na2CrO4, and Na2MoO4) into the topological conversion process of layer double hydroxide (LDHs)/MOFs, creating a series of interstitial VIB element‐doped LDHs/MOFs catalysts. The metalates engage in the alkaline hydrolysis process of MOF, generating LDHs on the MOF surface. Furthermore, altering the pH value in the reaction environment can modify the catalysts' morphology, dopant/LDHs content, and electronic structure. Consequently, the prepared interstitial W‐doped NiFe‐LDHs/MOFs catalyst displays superior catalytic performance, with overpotentials of only 250 mV at 500 mA cm−2. Moreover, a homemade anion‐exchange membrane water electrolysis (AEMWE) system featuring the fabricated electrocatalyst as the anode can operate stably for 500 hours at 1 A cm−2. The exceptional catalytic activity and stability stem from optimized intermediate adsorption/desorption behavior and the unique LDHs/MOFs nanostructure. This work not only highlights the potential of the catalysts for practical applications but also offers a new design approach for modulating MOFs using an alkaline hydrolysis strategy. The Group VIB metalates are proven to engage in the alkaline hydrolysis process of metal‐organic frameworks (MOF), generating interstitial metal‐doped layered double hydroxide/MOF heterostructure. Altering the pH value in the reaction environment can further modify the morphology and composition. Consequently, the prepared catalyst displays superior catalytic performance in the anion‐exchange membrane water electrolysis system.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202401909</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3000-8794</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-10, Vol.14 (37), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_3112726151
source Access via Wiley Online Library
subjects Anion exchanging
Catalysts
Catalytic activity
electrocatalyst
Electrocatalysts
Electrolysis
Electronic structure
group VIB metalate
Hydrolysis
Intermetallic compounds
Iron compounds
Metal-organic frameworks
metal‐organic framework
Nickel compounds
oxygen evolution reaction
Oxygen evolution reactions
Sodium chromate
Sodium molybdate
Stability
topological conversion
Topology
title Revolutionizing Oxygen Evolution Reaction Catalysts: Efficient and Ultrastable Interstitial W‐Doped NiFe‐LDHs/MOFs through Controlled Topological Conversion of Metal‐Organic Frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T22%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revolutionizing%20Oxygen%20Evolution%20Reaction%20Catalysts:%20Efficient%20and%20Ultrastable%20Interstitial%20W%E2%80%90Doped%20NiFe%E2%80%90LDHs/MOFs%20through%20Controlled%20Topological%20Conversion%20of%20Metal%E2%80%90Organic%20Frameworks&rft.jtitle=Advanced%20energy%20materials&rft.au=Bao,%20Yiwei&rft.date=2024-10-01&rft.volume=14&rft.issue=37&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202401909&rft_dat=%3Cproquest_cross%3E3112726151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112726151&rft_id=info:pmid/&rfr_iscdi=true