Revolutionizing Oxygen Evolution Reaction Catalysts: Efficient and Ultrastable Interstitial W‐Doped NiFe‐LDHs/MOFs through Controlled Topological Conversion of Metal‐Organic Frameworks
Although metal‐organic frameworks (MOFs) show promise as electrocatalysts due to their unique intrinsic features, their activity and stability often fall short. Herein, NiFe‐MOFs is used as a model to introduce group VIB metalates (Na2WO4, Na2CrO4, and Na2MoO4) into the topological conversion proces...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2024-10, Vol.14 (37), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although metal‐organic frameworks (MOFs) show promise as electrocatalysts due to their unique intrinsic features, their activity and stability often fall short. Herein, NiFe‐MOFs is used as a model to introduce group VIB metalates (Na2WO4, Na2CrO4, and Na2MoO4) into the topological conversion process of layer double hydroxide (LDHs)/MOFs, creating a series of interstitial VIB element‐doped LDHs/MOFs catalysts. The metalates engage in the alkaline hydrolysis process of MOF, generating LDHs on the MOF surface. Furthermore, altering the pH value in the reaction environment can modify the catalysts' morphology, dopant/LDHs content, and electronic structure. Consequently, the prepared interstitial W‐doped NiFe‐LDHs/MOFs catalyst displays superior catalytic performance, with overpotentials of only 250 mV at 500 mA cm−2. Moreover, a homemade anion‐exchange membrane water electrolysis (AEMWE) system featuring the fabricated electrocatalyst as the anode can operate stably for 500 hours at 1 A cm−2. The exceptional catalytic activity and stability stem from optimized intermediate adsorption/desorption behavior and the unique LDHs/MOFs nanostructure. This work not only highlights the potential of the catalysts for practical applications but also offers a new design approach for modulating MOFs using an alkaline hydrolysis strategy.
The Group VIB metalates are proven to engage in the alkaline hydrolysis process of metal‐organic frameworks (MOF), generating interstitial metal‐doped layered double hydroxide/MOF heterostructure. Altering the pH value in the reaction environment can further modify the morphology and composition. Consequently, the prepared catalyst displays superior catalytic performance in the anion‐exchange membrane water electrolysis system. |
---|---|
ISSN: | 1614-6832 1614-6840 |
DOI: | 10.1002/aenm.202401909 |