Distributed event‐triggered consensus control for multi‐agent systems under independent DoS attacks: A randomized transmission approach

In this article, the consensus problem for disturbed multi‐agent systems (MASs) under independent denial‐of‐service (DoS) attacks is investigated. The concerned attacks can jam different channels independently, resulting in a time‐varying and unknown network topology. In this situation, a dynamic ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2024-11, Vol.34 (17), p.11705-11724
Hauptverfasser: Sun, Yuan‐Cheng, Yao, Lina, Yang, Feisheng, Lu, An‐Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, the consensus problem for disturbed multi‐agent systems (MASs) under independent denial‐of‐service (DoS) attacks is investigated. The concerned attacks can jam different channels independently, resulting in a time‐varying and unknown network topology. In this situation, a dynamic event‐triggered control scheme with a hybrid communication strategy is presented to schedule information interaction over the network, and a distributed prediction‐based control algorithm is proposed to ameliorate the resilience. The system stability is proved in present of DoS attacks by introducing the decay rates of Lyapunov functions associated with different connectivity modes. In comparison with the most existing MASs studies under DoS attacks, the triggering mechanism that possibly subject to the malicious attacks executed at the triggering times is protected by the proposed randomized transmission protocol, and the tolerable attack intensities are quantified. Finally, simulations are presented to substantiate that the proposed strategy is effective.
ISSN:1049-8923
1099-1239
DOI:10.1002/rnc.7592