Phase Transition in Ferromagnetic \(q-\)state Models: Contours, Long-Range Interactions and Decaying Fields

Using the group structure of the state space of \(q-\)state models and a new definition of contour for long-range spin-systems in \(\mathbb{Z}^d\), with \(d\geq 2\), a multidimensional version of Fr\"{o}hlich-Spencer contours, we prove the phase transition for a class of ferromagnetic long-rang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Lucas Affonso, Bissacot, Rodrigo, Faria, Gilberto, Welsch, Kelvyn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the group structure of the state space of \(q-\)state models and a new definition of contour for long-range spin-systems in \(\mathbb{Z}^d\), with \(d\geq 2\), a multidimensional version of Fr\"{o}hlich-Spencer contours, we prove the phase transition for a class of ferromagnetic long-range systems which includes the Clock and Potts models. Our arguments work for the entire region of exponents of regular power-law interactions, namely \(\alpha > d\), and for any \(q \geq 2\). As an application, we prove the phase transition for Potts models with decaying fields when the field decays fast enough.
ISSN:2331-8422