Phase Transition in Ferromagnetic \(q-\)state Models: Contours, Long-Range Interactions and Decaying Fields
Using the group structure of the state space of \(q-\)state models and a new definition of contour for long-range spin-systems in \(\mathbb{Z}^d\), with \(d\geq 2\), a multidimensional version of Fr\"{o}hlich-Spencer contours, we prove the phase transition for a class of ferromagnetic long-rang...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the group structure of the state space of \(q-\)state models and a new definition of contour for long-range spin-systems in \(\mathbb{Z}^d\), with \(d\geq 2\), a multidimensional version of Fr\"{o}hlich-Spencer contours, we prove the phase transition for a class of ferromagnetic long-range systems which includes the Clock and Potts models. Our arguments work for the entire region of exponents of regular power-law interactions, namely \(\alpha > d\), and for any \(q \geq 2\). As an application, we prove the phase transition for Potts models with decaying fields when the field decays fast enough. |
---|---|
ISSN: | 2331-8422 |