InstaTrans: An Instruction-Aware Translation Framework for Non-English Instruction Datasets
It is challenging to generate high-quality instruction datasets for non-English languages due to tail phenomena, which limit performance on less frequently observed data. To mitigate this issue, we propose translating existing high-quality English instruction datasets as a solution, emphasizing the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is challenging to generate high-quality instruction datasets for non-English languages due to tail phenomena, which limit performance on less frequently observed data. To mitigate this issue, we propose translating existing high-quality English instruction datasets as a solution, emphasizing the need for complete and instruction-aware translations to maintain the inherent attributes of these datasets. We claim that fine-tuning LLMs with datasets translated in this way can improve their performance in the target language. To this end, we introduces a new translation framework tailored for instruction datasets, named InstaTrans (INSTruction-Aware TRANSlation). Through extensive experiments, we demonstrate the superiority of InstaTrans over other competitors in terms of completeness and instruction-awareness of translation, highlighting its potential to broaden the accessibility of LLMs across diverse languages at a relatively low cost. Furthermore, we have validated that fine-tuning LLMs with datasets translated by InstaTrans can effectively improve their performance in the target language. |
---|---|
ISSN: | 2331-8422 |