Crystal structure of brimonidine hydrogen tartrate, (C11H11BrN5)(HC4H4O6)
The crystal structure of brimonidine hydrogen tartrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Brimonidine hydrogen tartrate crystallizes in space group P21 (#4) with a = 7.56032(2), b = 7.35278(2), c = 30.10149(9...
Gespeichert in:
Veröffentlicht in: | Powder diffraction 2024-09, Vol.39 (3), p.144-150 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The crystal structure of brimonidine hydrogen tartrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Brimonidine hydrogen tartrate crystallizes in space group P21 (#4) with a = 7.56032(2), b = 7.35278(2), c = 30.10149(9) Å, β = 90.1992(2)°, V = 1673.312(10) Å3, and Z = 4 at 295 K. The crystal structure consists of alternating layers of cations and anions parallel to the ab-plane. Each of the hydrogen tartrate anions is linked to itself by very strong charge-assisted O–H⋯O hydrogen bonds into chains along the a-axis. Each hydroxyl group of each tartrate acts as a donor in an O–H⋯O or O–H⋯N hydrogen bond. One of these is intramolecular, but the other three are intermolecular. These hydrogen bonds link the hydrogen tartrate anions into layers parallel to the ab-plane and also link the anion–cation layers. The protonated N atoms act as donors in N–H⋯O or N–H⋯N hydrogen bonds to the carboxyl groups of the tartrates and to a ring nitrogen atom. These link the cations and anions, as well as providing cation–cation links. The amino N atoms of the cations form N–H⋯O hydrogen bonds to hydroxyl groups of the anions. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®) |
---|---|
ISSN: | 0885-7156 1945-7413 |
DOI: | 10.1017/S0885715624000174 |