Bounding p-Brauer characters in finite groups with two conjugacy classes of p-elements

Let k ( B 0 ) and l ( B 0 ) respectively denote the number of ordinary and p -Brauer irreducible characters in the principal block B 0 of a finite group G . We prove that, if k ( B 0 )− l ( B 0 ) = 1, then l ( B 0 ) ≥ p − 1 or else p = 11 and l ( B 0 ) = 9. This follows from a more general result th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2024, Vol.262 (1), p.327-358
Hauptverfasser: Hung, Nguyen Ngoc, Sambale, Benjamin, Tiep, Pham Huu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let k ( B 0 ) and l ( B 0 ) respectively denote the number of ordinary and p -Brauer irreducible characters in the principal block B 0 of a finite group G . We prove that, if k ( B 0 )− l ( B 0 ) = 1, then l ( B 0 ) ≥ p − 1 or else p = 11 and l ( B 0 ) = 9. This follows from a more general result that for every finite group G in which all non-trivial p -elements are conjugate, l ( B 0 ) ≥ p − 1 or else p = 11 and G / O p ′ ( G ) ≅ C 11 2 ⋊ SL ( 2 , 5 ) . These results are useful in the study of principal blocks with few characters. We propose that, in every finite group G of order divisible by p , the number of irreducible Brauer characters in the principal p -block of G is always at least 2 p − 1 + 1 − k p ( G ) , where k p ( G ) is the number of conjugacy classes of p -elements of G . This indeed is a consequence of the celebrated Alperin weight conjecture and known results on bounding the number of p -regular classes in finite groups.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-024-2613-1