Bounding p-Brauer characters in finite groups with two conjugacy classes of p-elements
Let k ( B 0 ) and l ( B 0 ) respectively denote the number of ordinary and p -Brauer irreducible characters in the principal block B 0 of a finite group G . We prove that, if k ( B 0 )− l ( B 0 ) = 1, then l ( B 0 ) ≥ p − 1 or else p = 11 and l ( B 0 ) = 9. This follows from a more general result th...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2024, Vol.262 (1), p.327-358 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
k
(
B
0
) and
l
(
B
0
) respectively denote the number of ordinary and
p
-Brauer irreducible characters in the principal block
B
0
of a finite group
G
. We prove that, if
k
(
B
0
)−
l
(
B
0
) = 1, then
l
(
B
0
) ≥
p
− 1 or else
p
= 11 and
l
(
B
0
) = 9. This follows from a more general result that for every finite group
G
in which all non-trivial
p
-elements are conjugate,
l
(
B
0
) ≥
p
− 1 or else
p
= 11 and
G
/
O
p
′
(
G
)
≅
C
11
2
⋊
SL
(
2
,
5
)
. These results are useful in the study of principal blocks with few characters.
We propose that, in every finite group
G
of order divisible by
p
, the number of irreducible Brauer characters in the principal
p
-block of
G
is always at least
2
p
−
1
+
1
−
k
p
(
G
)
, where
k
p
(
G
) is the number of conjugacy classes of
p
-elements of
G
. This indeed is a consequence of the celebrated Alperin weight conjecture and known results on bounding the number of
p
-regular classes in finite groups. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-024-2613-1 |