Unconditional uniqueness and non-uniqueness for Hardy–Hénon parabolic equations
We study the problems of uniqueness for Hardy–Hénon parabolic equations, which are semilinear heat equations with the singular potential (Hardy type) or the increasing potential (Hénon type) in the nonlinear term. To deal with the Hardy–Hénon type nonlinearities, we employ weighted Lorentz spaces as...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2024, Vol.390 (3), p.3765-3825 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3825 |
---|---|
container_issue | 3 |
container_start_page | 3765 |
container_title | Mathematische annalen |
container_volume | 390 |
creator | Chikami, Noboru Ikeda, Masahiro Taniguchi, Koichi Tayachi, Slim |
description | We study the problems of uniqueness for Hardy–Hénon parabolic equations, which are semilinear heat equations with the singular potential (Hardy type) or the increasing potential (Hénon type) in the nonlinear term. To deal with the Hardy–Hénon type nonlinearities, we employ weighted Lorentz spaces as solution spaces. We prove unconditional uniqueness and non-uniqueness, and we establish uniqueness criterion for Hardy–Hénon parabolic equations in the weighted Lorentz spaces. The results extend the previous works on the Fujita equation and Hardy equations in Lebesgue spaces. |
doi_str_mv | 10.1007/s00208-024-02828-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3112100626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112100626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8aea0eaca88a8e96682595bd4ed65e83aeb21420ef0d4238d3b07f28542bc4703</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBc3SSbLLpUYpaoSCIPYfZTVa21KRNuofefAefwufwTXwSU1fQk4dhYOb_f2Y-Qs4ZXDKA6ioBcNAUeJlLc03VARmxUnDKNFSHZJT3kkot2DE5SWkJAAJAjsjjwjfB227bBY-rovfdpnfepVSgt4UPnv4ZtSEWM4x29_n6Nvt4z9tijRHrsOqawm163KekU3LU4iq5s58-Jovbm6fpjM4f7u6n13PaCCW2VKNDcNig1qjdRCnN5UTWtnRWSacFupqzkoNrwZZcaCtqqFquZcnrpqxAjMnFkLuOIV-YtmYZ-pi_SEYwxjMXxVVW8UHVxJBSdK1Zx-4F484wMHt2ZmBnMjvzzc7sTWIwpSz2zy7-Rv_j-gLr_nQk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112100626</pqid></control><display><type>article</type><title>Unconditional uniqueness and non-uniqueness for Hardy–Hénon parabolic equations</title><source>SpringerLink Journals (MCLS)</source><creator>Chikami, Noboru ; Ikeda, Masahiro ; Taniguchi, Koichi ; Tayachi, Slim</creator><creatorcontrib>Chikami, Noboru ; Ikeda, Masahiro ; Taniguchi, Koichi ; Tayachi, Slim</creatorcontrib><description>We study the problems of uniqueness for Hardy–Hénon parabolic equations, which are semilinear heat equations with the singular potential (Hardy type) or the increasing potential (Hénon type) in the nonlinear term. To deal with the Hardy–Hénon type nonlinearities, we employ weighted Lorentz spaces as solution spaces. We prove unconditional uniqueness and non-uniqueness, and we establish uniqueness criterion for Hardy–Hénon parabolic equations in the weighted Lorentz spaces. The results extend the previous works on the Fujita equation and Hardy equations in Lebesgue spaces.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-024-02828-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematics ; Mathematics and Statistics ; Nonlinearity ; Solution space ; Thermodynamics ; Uniqueness</subject><ispartof>Mathematische annalen, 2024, Vol.390 (3), p.3765-3825</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8aea0eaca88a8e96682595bd4ed65e83aeb21420ef0d4238d3b07f28542bc4703</citedby><cites>FETCH-LOGICAL-c363t-8aea0eaca88a8e96682595bd4ed65e83aeb21420ef0d4238d3b07f28542bc4703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-024-02828-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-024-02828-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chikami, Noboru</creatorcontrib><creatorcontrib>Ikeda, Masahiro</creatorcontrib><creatorcontrib>Taniguchi, Koichi</creatorcontrib><creatorcontrib>Tayachi, Slim</creatorcontrib><title>Unconditional uniqueness and non-uniqueness for Hardy–Hénon parabolic equations</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>We study the problems of uniqueness for Hardy–Hénon parabolic equations, which are semilinear heat equations with the singular potential (Hardy type) or the increasing potential (Hénon type) in the nonlinear term. To deal with the Hardy–Hénon type nonlinearities, we employ weighted Lorentz spaces as solution spaces. We prove unconditional uniqueness and non-uniqueness, and we establish uniqueness criterion for Hardy–Hénon parabolic equations in the weighted Lorentz spaces. The results extend the previous works on the Fujita equation and Hardy equations in Lebesgue spaces.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinearity</subject><subject>Solution space</subject><subject>Thermodynamics</subject><subject>Uniqueness</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFKAzEQhoMoWKsv4GnBc3SSbLLpUYpaoSCIPYfZTVa21KRNuofefAefwufwTXwSU1fQk4dhYOb_f2Y-Qs4ZXDKA6ioBcNAUeJlLc03VARmxUnDKNFSHZJT3kkot2DE5SWkJAAJAjsjjwjfB227bBY-rovfdpnfepVSgt4UPnv4ZtSEWM4x29_n6Nvt4z9tijRHrsOqawm163KekU3LU4iq5s58-Jovbm6fpjM4f7u6n13PaCCW2VKNDcNig1qjdRCnN5UTWtnRWSacFupqzkoNrwZZcaCtqqFquZcnrpqxAjMnFkLuOIV-YtmYZ-pi_SEYwxjMXxVVW8UHVxJBSdK1Zx-4F484wMHt2ZmBnMjvzzc7sTWIwpSz2zy7-Rv_j-gLr_nQk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chikami, Noboru</creator><creator>Ikeda, Masahiro</creator><creator>Taniguchi, Koichi</creator><creator>Tayachi, Slim</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Unconditional uniqueness and non-uniqueness for Hardy–Hénon parabolic equations</title><author>Chikami, Noboru ; Ikeda, Masahiro ; Taniguchi, Koichi ; Tayachi, Slim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8aea0eaca88a8e96682595bd4ed65e83aeb21420ef0d4238d3b07f28542bc4703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinearity</topic><topic>Solution space</topic><topic>Thermodynamics</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chikami, Noboru</creatorcontrib><creatorcontrib>Ikeda, Masahiro</creatorcontrib><creatorcontrib>Taniguchi, Koichi</creatorcontrib><creatorcontrib>Tayachi, Slim</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chikami, Noboru</au><au>Ikeda, Masahiro</au><au>Taniguchi, Koichi</au><au>Tayachi, Slim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unconditional uniqueness and non-uniqueness for Hardy–Hénon parabolic equations</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2024</date><risdate>2024</risdate><volume>390</volume><issue>3</issue><spage>3765</spage><epage>3825</epage><pages>3765-3825</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>We study the problems of uniqueness for Hardy–Hénon parabolic equations, which are semilinear heat equations with the singular potential (Hardy type) or the increasing potential (Hénon type) in the nonlinear term. To deal with the Hardy–Hénon type nonlinearities, we employ weighted Lorentz spaces as solution spaces. We prove unconditional uniqueness and non-uniqueness, and we establish uniqueness criterion for Hardy–Hénon parabolic equations in the weighted Lorentz spaces. The results extend the previous works on the Fujita equation and Hardy equations in Lebesgue spaces.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-024-02828-6</doi><tpages>61</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2024, Vol.390 (3), p.3765-3825 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_3112100626 |
source | SpringerLink Journals (MCLS) |
subjects | Mathematics Mathematics and Statistics Nonlinearity Solution space Thermodynamics Uniqueness |
title | Unconditional uniqueness and non-uniqueness for Hardy–Hénon parabolic equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unconditional%20uniqueness%20and%20non-uniqueness%20for%20Hardy%E2%80%93H%C3%A9non%20parabolic%20equations&rft.jtitle=Mathematische%20annalen&rft.au=Chikami,%20Noboru&rft.date=2024&rft.volume=390&rft.issue=3&rft.spage=3765&rft.epage=3825&rft.pages=3765-3825&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-024-02828-6&rft_dat=%3Cproquest_cross%3E3112100626%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112100626&rft_id=info:pmid/&rfr_iscdi=true |