Unconditional uniqueness and non-uniqueness for Hardy–Hénon parabolic equations

We study the problems of uniqueness for Hardy–Hénon parabolic equations, which are semilinear heat equations with the singular potential (Hardy type) or the increasing potential (Hénon type) in the nonlinear term. To deal with the Hardy–Hénon type nonlinearities, we employ weighted Lorentz spaces as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2024, Vol.390 (3), p.3765-3825
Hauptverfasser: Chikami, Noboru, Ikeda, Masahiro, Taniguchi, Koichi, Tayachi, Slim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the problems of uniqueness for Hardy–Hénon parabolic equations, which are semilinear heat equations with the singular potential (Hardy type) or the increasing potential (Hénon type) in the nonlinear term. To deal with the Hardy–Hénon type nonlinearities, we employ weighted Lorentz spaces as solution spaces. We prove unconditional uniqueness and non-uniqueness, and we establish uniqueness criterion for Hardy–Hénon parabolic equations in the weighted Lorentz spaces. The results extend the previous works on the Fujita equation and Hardy equations in Lebesgue spaces.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-024-02828-6