A fiducial approach to the nonparametric deconvolution problem: The discrete case

Fiducial inference is applied to nonparametric g -modeling in the discrete case. We propose a computationally efficient algorithm to sample from the fiducial distribution and use the generated samples to construct point estimates and confidence intervals. We study the theoretical properties of the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2024-11, Vol.67 (11), p.2653-2670
Hauptverfasser: Cui, Yifan, Hannig, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fiducial inference is applied to nonparametric g -modeling in the discrete case. We propose a computationally efficient algorithm to sample from the fiducial distribution and use the generated samples to construct point estimates and confidence intervals. We study the theoretical properties of the fiducial distribution and perform extensive simulations in various scenarios. The proposed approach gives rise to good statistical performance in terms of the mean squared error of point estimators and coverage of confidence intervals. Furthermore, we apply the proposed fiducial method to estimate the probability of each satellite site being malignant using gastric adenocarcinoma data with 844 patients.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-021-2086-5