Evaluation of the Possibility of Using a Wood-Based Composite Material for Layered Formation of Items Considering Thermomechanical Properties
A composite material based on sawdust and a binder, which was a multicomponent synthetic polymer and thermosetting plastic, in particular, a modified epoxy resin with a hardener, was studied. The ability to use the composite material for layered preparation of items was confirmed by results of therm...
Gespeichert in:
Veröffentlicht in: | Fibre chemistry 2024-05, Vol.56 (1), p.36-42 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A composite material based on sawdust and a binder, which was a multicomponent synthetic polymer and thermosetting plastic, in particular, a modified epoxy resin with a hardener, was studied. The ability to use the composite material for layered preparation of items was confirmed by results of thermomechanical studies. The temperatures at which the composite material with a sawdust content up to 30% transitioned from a glassy state to a highly elastic state were determined. The temperature intervals characteristic of a plateau of the highly elastic state and the transition temperature of the multicomponent composite polymer into a viscous-flow state were determined. The results allowed the optimal content of sawdust in the composite material to be established (20-25%), which corresponded to a stronger state of the material. The results agreed with the tendency to increase the mechanical properties and change thermomechanical curves of wood-based composites shown by scientists from various countries. The novelty consisted of the established limits for the sawdust concentration in the thermosetting plastic, which was a multicomponent composite based on epoxy resin with a hardener. The practical significance of the work was associated with the production of the required temperature and time modes for 3D-printer operating on additive technology for deposition of a polymer in a liquid aggregate state. |
---|---|
ISSN: | 0015-0541 1573-8493 |
DOI: | 10.1007/s10692-024-10511-4 |