Construction of Machine Learning Interatomic Potentials for Metals

Molecular dynamics (MD) is a powerful tool for modeling the phase and structural transformations and the evolution of defects and their influence on the metallic material properties. The accuracy of MD modeling directly depends on the quality of interatomic potentials. Modern machine-learning potent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian physics journal 2024-09, Vol.67 (9), p.1408-1413
Hauptverfasser: Dmitriev, S. V., Kistanov, A. A., Kosarev, I. V., Scherbinin, S. A., Shapeev, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular dynamics (MD) is a powerful tool for modeling the phase and structural transformations and the evolution of defects and their influence on the metallic material properties. The accuracy of MD modeling directly depends on the quality of interatomic potentials. Modern machine-learning potentials are typically trained on random atomic configurations. This approach has significantly improved the quality of new potentials over traditional EAM potentials. In this work, exact solutions to the equations of atomic motion are offered to train the machine learning potentials.
ISSN:1064-8887
1573-9228
DOI:10.1007/s11182-024-03261-7