On Boundedness of the l-ð"-Index of Entire Functions Represented by Series in a System of Functions

Let f be an entire transcendental function and let (λn) be a sequence of positive numbers increasing to +∞. Suppose that the series AZ=∑n=1∞anfλnz is regularly convergent in ℂ, i.e., ð"(r, A) := ∑n=1∞anMfrλn< + ∞ for all r ∈ [0,+ ∞). For a positive function l continuous on [0, + ∞), the fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2024-01, Vol.76 (4), p.669-679
1. Verfasser: Sheremeta Myroslav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let f be an entire transcendental function and let (λn) be a sequence of positive numbers increasing to +∞. Suppose that the series AZ=∑n=1∞anfλnz is regularly convergent in ℂ, i.e., ð"(r, A) := ∑n=1∞anMfrλn< + ∞ for all r ∈ [0,+ ∞). For a positive function l continuous on [0, + ∞), the function A is called a function of bounded l-ð"-index if there exists N ∈ ℤ+ such that Mr,Ann!lnr≤maxMr,Akk!lkr:0≤k≤N for all n ∈ ℤ+ and all r ∈ [0,+ ∞). We study the properties of growth of the functions of bounded l- ð"-index and formulate some unsolved problems.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-024-02346-3