On Boundedness of the l-ð"-Index of Entire Functions Represented by Series in a System of Functions
Let f be an entire transcendental function and let (λn) be a sequence of positive numbers increasing to +∞. Suppose that the series AZ=∑n=1∞anfλnz is regularly convergent in ℂ, i.e., ð"(r, A) := ∑n=1∞anMfrλn< + ∞ for all r ∈ [0,+ ∞). For a positive function l continuous on [0, + ∞), the fu...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2024-01, Vol.76 (4), p.669-679 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let f be an entire transcendental function and let (λn) be a sequence of positive numbers increasing to +∞. Suppose that the series AZ=∑n=1∞anfλnz is regularly convergent in ℂ, i.e., ð"(r, A) := ∑n=1∞anMfrλn< + ∞ for all r ∈ [0,+ ∞). For a positive function l continuous on [0, + ∞), the function A is called a function of bounded l-ð"-index if there exists N ∈ ℤ+ such that Mr,Ann!lnr≤maxMr,Akk!lkr:0≤k≤N for all n ∈ ℤ+ and all r ∈ [0,+ ∞). We study the properties of growth of the functions of bounded l- ð"-index and formulate some unsolved problems. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-024-02346-3 |