On a self-embedding problem for self-similar sets
Let $K\subset {\mathbb {R}}^d$ be a self-similar set generated by an iterated function system $\{\varphi _i\}_{i=1}^m$ satisfying the strong separation condition and let f be a contracting similitude with $f(K)\subseteq K$ . We show that $f(K)$ is relatively open in K if all $\varphi _i$ share a com...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2024-10, Vol.44 (10), p.3002-3011 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3011 |
---|---|
container_issue | 10 |
container_start_page | 3002 |
container_title | Ergodic theory and dynamical systems |
container_volume | 44 |
creator | XIAO, JIAN-CI |
description | Let
$K\subset {\mathbb {R}}^d$
be a self-similar set generated by an iterated function system
$\{\varphi _i\}_{i=1}^m$
satisfying the strong separation condition and let f be a contracting similitude with
$f(K)\subseteq K$
. We show that
$f(K)$
is relatively open in K if all
$\varphi _i$
share a common contraction ratio and orthogonal part. We also provide a counterexample when the orthogonal parts are allowed to vary. This partially answers a question of Elekes, Keleti and Máthé [Ergod. Th. & Dynam. Sys. 30 (2010), 399–440]. As a byproduct of our argument, when
$d=1$
and K admits two homogeneous generating iterated function systems satisfying the strong separation condition but with contraction ratios of opposite signs, we show that K is symmetric. This partially answers a question of Feng and Wang [Adv. Math. 222 (2009), 1964–1981]. |
doi_str_mv | 10.1017/etds.2024.2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111572277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2024_2</cupid><sourcerecordid>3111572277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-5d684edfe4add68b57c5a14cfba40d6e04469578c69418a3a01fbc11dcef9fd73</originalsourceid><addsrcrecordid>eNptkEtrwzAQhEVpoW7aU_-AocciVytLln0soS8I5NKehR6r4OBHKjmH_vvaJNBLT7vLfMwOQ8g9sAIYqCecfCo446LgFyQDUTVUCFCXJGMgSlrWUl2Tm5T2jLESlMwIbIfc5Am7QLG36H077PJDHG2HfR7GeJJS27edWY4p3ZKrYLqEd-e5Il-vL5_rd7rZvn2snzfU8UZMVPqqFugDCuPn1UrlpAHhgjWC-QqZmNNJVbuqEVCb0jAI1gF4h6EJXpUr8nDyndN8HzFNej8e4zC_1CUASMW5WqjHE-XimFLEoA-x7U380cD00oleOtFLJ5rPND3Tprex9Tv8M_2P_wWNX2NR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111572277</pqid></control><display><type>article</type><title>On a self-embedding problem for self-similar sets</title><source>Cambridge University Press Journals Complete</source><creator>XIAO, JIAN-CI</creator><creatorcontrib>XIAO, JIAN-CI</creatorcontrib><description>Let
$K\subset {\mathbb {R}}^d$
be a self-similar set generated by an iterated function system
$\{\varphi _i\}_{i=1}^m$
satisfying the strong separation condition and let f be a contracting similitude with
$f(K)\subseteq K$
. We show that
$f(K)$
is relatively open in K if all
$\varphi _i$
share a common contraction ratio and orthogonal part. We also provide a counterexample when the orthogonal parts are allowed to vary. This partially answers a question of Elekes, Keleti and Máthé [Ergod. Th. & Dynam. Sys. 30 (2010), 399–440]. As a byproduct of our argument, when
$d=1$
and K admits two homogeneous generating iterated function systems satisfying the strong separation condition but with contraction ratios of opposite signs, we show that K is symmetric. This partially answers a question of Feng and Wang [Adv. Math. 222 (2009), 1964–1981].</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2024.2</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Original Article ; Questions ; Self-similarity ; Separation</subject><ispartof>Ergodic theory and dynamical systems, 2024-10, Vol.44 (10), p.3002-3011</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press</rights><rights>The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-5d684edfe4add68b57c5a14cfba40d6e04469578c69418a3a01fbc11dcef9fd73</cites><orcidid>0000-0002-1014-8725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385724000026/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>XIAO, JIAN-CI</creatorcontrib><title>On a self-embedding problem for self-similar sets</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>Let
$K\subset {\mathbb {R}}^d$
be a self-similar set generated by an iterated function system
$\{\varphi _i\}_{i=1}^m$
satisfying the strong separation condition and let f be a contracting similitude with
$f(K)\subseteq K$
. We show that
$f(K)$
is relatively open in K if all
$\varphi _i$
share a common contraction ratio and orthogonal part. We also provide a counterexample when the orthogonal parts are allowed to vary. This partially answers a question of Elekes, Keleti and Máthé [Ergod. Th. & Dynam. Sys. 30 (2010), 399–440]. As a byproduct of our argument, when
$d=1$
and K admits two homogeneous generating iterated function systems satisfying the strong separation condition but with contraction ratios of opposite signs, we show that K is symmetric. This partially answers a question of Feng and Wang [Adv. Math. 222 (2009), 1964–1981].</description><subject>Original Article</subject><subject>Questions</subject><subject>Self-similarity</subject><subject>Separation</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><recordid>eNptkEtrwzAQhEVpoW7aU_-AocciVytLln0soS8I5NKehR6r4OBHKjmH_vvaJNBLT7vLfMwOQ8g9sAIYqCecfCo446LgFyQDUTVUCFCXJGMgSlrWUl2Tm5T2jLESlMwIbIfc5Am7QLG36H077PJDHG2HfR7GeJJS27edWY4p3ZKrYLqEd-e5Il-vL5_rd7rZvn2snzfU8UZMVPqqFugDCuPn1UrlpAHhgjWC-QqZmNNJVbuqEVCb0jAI1gF4h6EJXpUr8nDyndN8HzFNej8e4zC_1CUASMW5WqjHE-XimFLEoA-x7U380cD00oleOtFLJ5rPND3Tprex9Tv8M_2P_wWNX2NR</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>XIAO, JIAN-CI</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1014-8725</orcidid></search><sort><creationdate>20241001</creationdate><title>On a self-embedding problem for self-similar sets</title><author>XIAO, JIAN-CI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-5d684edfe4add68b57c5a14cfba40d6e04469578c69418a3a01fbc11dcef9fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Original Article</topic><topic>Questions</topic><topic>Self-similarity</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XIAO, JIAN-CI</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XIAO, JIAN-CI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a self-embedding problem for self-similar sets</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>44</volume><issue>10</issue><spage>3002</spage><epage>3011</epage><pages>3002-3011</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>Let
$K\subset {\mathbb {R}}^d$
be a self-similar set generated by an iterated function system
$\{\varphi _i\}_{i=1}^m$
satisfying the strong separation condition and let f be a contracting similitude with
$f(K)\subseteq K$
. We show that
$f(K)$
is relatively open in K if all
$\varphi _i$
share a common contraction ratio and orthogonal part. We also provide a counterexample when the orthogonal parts are allowed to vary. This partially answers a question of Elekes, Keleti and Máthé [Ergod. Th. & Dynam. Sys. 30 (2010), 399–440]. As a byproduct of our argument, when
$d=1$
and K admits two homogeneous generating iterated function systems satisfying the strong separation condition but with contraction ratios of opposite signs, we show that K is symmetric. This partially answers a question of Feng and Wang [Adv. Math. 222 (2009), 1964–1981].</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2024.2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1014-8725</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2024-10, Vol.44 (10), p.3002-3011 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_proquest_journals_3111572277 |
source | Cambridge University Press Journals Complete |
subjects | Original Article Questions Self-similarity Separation |
title | On a self-embedding problem for self-similar sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20self-embedding%20problem%20for%20self-similar%20sets&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=XIAO,%20JIAN-CI&rft.date=2024-10-01&rft.volume=44&rft.issue=10&rft.spage=3002&rft.epage=3011&rft.pages=3002-3011&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2024.2&rft_dat=%3Cproquest_cross%3E3111572277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111572277&rft_id=info:pmid/&rft_cupid=10_1017_etds_2024_2&rfr_iscdi=true |