On a self-embedding problem for self-similar sets
Let $K\subset {\mathbb {R}}^d$ be a self-similar set generated by an iterated function system $\{\varphi _i\}_{i=1}^m$ satisfying the strong separation condition and let f be a contracting similitude with $f(K)\subseteq K$ . We show that $f(K)$ is relatively open in K if all $\varphi _i$ share a com...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2024-10, Vol.44 (10), p.3002-3011 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$K\subset {\mathbb {R}}^d$
be a self-similar set generated by an iterated function system
$\{\varphi _i\}_{i=1}^m$
satisfying the strong separation condition and let f be a contracting similitude with
$f(K)\subseteq K$
. We show that
$f(K)$
is relatively open in K if all
$\varphi _i$
share a common contraction ratio and orthogonal part. We also provide a counterexample when the orthogonal parts are allowed to vary. This partially answers a question of Elekes, Keleti and Máthé [Ergod. Th. & Dynam. Sys. 30 (2010), 399–440]. As a byproduct of our argument, when
$d=1$
and K admits two homogeneous generating iterated function systems satisfying the strong separation condition but with contraction ratios of opposite signs, we show that K is symmetric. This partially answers a question of Feng and Wang [Adv. Math. 222 (2009), 1964–1981]. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2024.2 |