SOME COUNTING QUESTIONS FOR MATRIX PRODUCTS
Given a set X of $n\times n$ matrices and a positive integer m, we consider the problem of estimating the cardinalities of the product sets $A_1 \cdots A_m$ , where $A_i\in X$ . When $X={\mathcal M}_n(\mathbb {Z};H)$ , the set of $n\times n$ matrices with integer elements of size at most H, we give...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2024-08, Vol.110 (1), p.32-43 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | 1 |
container_start_page | 32 |
container_title | Bulletin of the Australian Mathematical Society |
container_volume | 110 |
creator | AFIFURRAHMAN, MUHAMMAD |
description | Given a set X of
$n\times n$
matrices and a positive integer m, we consider the problem of estimating the cardinalities of the product sets
$A_1 \cdots A_m$
, where
$A_i\in X$
. When
$X={\mathcal M}_n(\mathbb {Z};H)$
, the set of
$n\times n$
matrices with integer elements of size at most H, we give several bounds on the cardinalities of the product sets and solution sets of related equations such as
$A_1 \cdots A_m=C$
and
$A_1 \cdots A_m=B_1 \cdots B_m$
. We also consider the case where X is the subset of matrices in
${\mathcal M}_n(\mathbb {F})$
, where
$\mathbb {F}$
is a field with bounded rank
$k\leq n$
. In this case, we completely classify the related product set. |
doi_str_mv | 10.1017/S0004972723001004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111488812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972723001004</cupid><sourcerecordid>3111488812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-8bff351cc61d6a020b9e3925f1183f9895cbe12cbfb1fc35763e9f0e518ef4a23</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoWKcfwLeCj1LNTZo2eRy1m4Wt0f4B30KbJbLh7Ey3B7-9LRv4ID7deznndy4chG4BPwCG-LHEGIciJjGhGMOwnyEPYsYCiCg9R94oB6N-ia76fjNcjBHuoftSLlM_kXVeZfncf63TsspkXvozWfjLaVVkb_5LIZ_qpCqv0YVtPnpzc5oTVM_SKnkOFnKeJdNFoEkk9gFvraUMtI5gFTWY4FYYKgizAJxawQXTrQGiW9uC1ZTFETXCYsOAGxs2hE7Q3TF357qvg-n3atMd3OfwUlEACDnnMLrg6NKu63tnrNq59bZx3wqwGjtRfzoZGHpimm3r1qt38xv9P_UDb39dhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111488812</pqid></control><display><type>article</type><title>SOME COUNTING QUESTIONS FOR MATRIX PRODUCTS</title><source>Cambridge Journals</source><creator>AFIFURRAHMAN, MUHAMMAD</creator><creatorcontrib>AFIFURRAHMAN, MUHAMMAD</creatorcontrib><description>Given a set X of
$n\times n$
matrices and a positive integer m, we consider the problem of estimating the cardinalities of the product sets
$A_1 \cdots A_m$
, where
$A_i\in X$
. When
$X={\mathcal M}_n(\mathbb {Z};H)$
, the set of
$n\times n$
matrices with integer elements of size at most H, we give several bounds on the cardinalities of the product sets and solution sets of related equations such as
$A_1 \cdots A_m=C$
and
$A_1 \cdots A_m=B_1 \cdots B_m$
. We also consider the case where X is the subset of matrices in
${\mathcal M}_n(\mathbb {F})$
, where
$\mathbb {F}$
is a field with bounded rank
$k\leq n$
. In this case, we completely classify the related product set.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972723001004</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Codes ; Integers</subject><ispartof>Bulletin of the Australian Mathematical Society, 2024-08, Vol.110 (1), p.32-43</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-8bff351cc61d6a020b9e3925f1183f9895cbe12cbfb1fc35763e9f0e518ef4a23</cites><orcidid>0000-0002-7400-320X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972723001004/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>AFIFURRAHMAN, MUHAMMAD</creatorcontrib><title>SOME COUNTING QUESTIONS FOR MATRIX PRODUCTS</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>Given a set X of
$n\times n$
matrices and a positive integer m, we consider the problem of estimating the cardinalities of the product sets
$A_1 \cdots A_m$
, where
$A_i\in X$
. When
$X={\mathcal M}_n(\mathbb {Z};H)$
, the set of
$n\times n$
matrices with integer elements of size at most H, we give several bounds on the cardinalities of the product sets and solution sets of related equations such as
$A_1 \cdots A_m=C$
and
$A_1 \cdots A_m=B_1 \cdots B_m$
. We also consider the case where X is the subset of matrices in
${\mathcal M}_n(\mathbb {F})$
, where
$\mathbb {F}$
is a field with bounded rank
$k\leq n$
. In this case, we completely classify the related product set.</description><subject>Codes</subject><subject>Integers</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoWKcfwLeCj1LNTZo2eRy1m4Wt0f4B30KbJbLh7Ey3B7-9LRv4ID7deznndy4chG4BPwCG-LHEGIciJjGhGMOwnyEPYsYCiCg9R94oB6N-ia76fjNcjBHuoftSLlM_kXVeZfncf63TsspkXvozWfjLaVVkb_5LIZ_qpCqv0YVtPnpzc5oTVM_SKnkOFnKeJdNFoEkk9gFvraUMtI5gFTWY4FYYKgizAJxawQXTrQGiW9uC1ZTFETXCYsOAGxs2hE7Q3TF357qvg-n3atMd3OfwUlEACDnnMLrg6NKu63tnrNq59bZx3wqwGjtRfzoZGHpimm3r1qt38xv9P_UDb39dhw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>AFIFURRAHMAN, MUHAMMAD</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7400-320X</orcidid></search><sort><creationdate>20240801</creationdate><title>SOME COUNTING QUESTIONS FOR MATRIX PRODUCTS</title><author>AFIFURRAHMAN, MUHAMMAD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-8bff351cc61d6a020b9e3925f1183f9895cbe12cbfb1fc35763e9f0e518ef4a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codes</topic><topic>Integers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AFIFURRAHMAN, MUHAMMAD</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AFIFURRAHMAN, MUHAMMAD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOME COUNTING QUESTIONS FOR MATRIX PRODUCTS</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>110</volume><issue>1</issue><spage>32</spage><epage>43</epage><pages>32-43</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>Given a set X of
$n\times n$
matrices and a positive integer m, we consider the problem of estimating the cardinalities of the product sets
$A_1 \cdots A_m$
, where
$A_i\in X$
. When
$X={\mathcal M}_n(\mathbb {Z};H)$
, the set of
$n\times n$
matrices with integer elements of size at most H, we give several bounds on the cardinalities of the product sets and solution sets of related equations such as
$A_1 \cdots A_m=C$
and
$A_1 \cdots A_m=B_1 \cdots B_m$
. We also consider the case where X is the subset of matrices in
${\mathcal M}_n(\mathbb {F})$
, where
$\mathbb {F}$
is a field with bounded rank
$k\leq n$
. In this case, we completely classify the related product set.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972723001004</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7400-320X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-9727 |
ispartof | Bulletin of the Australian Mathematical Society, 2024-08, Vol.110 (1), p.32-43 |
issn | 0004-9727 1755-1633 |
language | eng |
recordid | cdi_proquest_journals_3111488812 |
source | Cambridge Journals |
subjects | Codes Integers |
title | SOME COUNTING QUESTIONS FOR MATRIX PRODUCTS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOME%20COUNTING%20QUESTIONS%20FOR%20MATRIX%20PRODUCTS&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=AFIFURRAHMAN,%20MUHAMMAD&rft.date=2024-08-01&rft.volume=110&rft.issue=1&rft.spage=32&rft.epage=43&rft.pages=32-43&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972723001004&rft_dat=%3Cproquest_cross%3E3111488812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111488812&rft_id=info:pmid/&rft_cupid=10_1017_S0004972723001004&rfr_iscdi=true |