SOME COUNTING QUESTIONS FOR MATRIX PRODUCTS
Given a set X of $n\times n$ matrices and a positive integer m, we consider the problem of estimating the cardinalities of the product sets $A_1 \cdots A_m$ , where $A_i\in X$ . When $X={\mathcal M}_n(\mathbb {Z};H)$ , the set of $n\times n$ matrices with integer elements of size at most H, we give...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2024-08, Vol.110 (1), p.32-43 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a set X of
$n\times n$
matrices and a positive integer m, we consider the problem of estimating the cardinalities of the product sets
$A_1 \cdots A_m$
, where
$A_i\in X$
. When
$X={\mathcal M}_n(\mathbb {Z};H)$
, the set of
$n\times n$
matrices with integer elements of size at most H, we give several bounds on the cardinalities of the product sets and solution sets of related equations such as
$A_1 \cdots A_m=C$
and
$A_1 \cdots A_m=B_1 \cdots B_m$
. We also consider the case where X is the subset of matrices in
${\mathcal M}_n(\mathbb {F})$
, where
$\mathbb {F}$
is a field with bounded rank
$k\leq n$
. In this case, we completely classify the related product set. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972723001004 |