Quantitative expansivity for ergodic \(\mathbb{Z}^d\) actions
We study expansiveness properties of positive measure subsets of ergodic \(\mathbb{Z}^d\)-actions along two different types of structured subsets of \(\mathbb{Z}^d\), namely, cyclic subgroups and images of integer polynomials. We prove quantitative expansiveness properties in both cases and strength...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study expansiveness properties of positive measure subsets of ergodic \(\mathbb{Z}^d\)-actions along two different types of structured subsets of \(\mathbb{Z}^d\), namely, cyclic subgroups and images of integer polynomials. We prove quantitative expansiveness properties in both cases and strengthen combinatorial results obtained by Bj\"orklund and Fish in arXiv:2401.03724, and Bulinski and Fish in arXiv:2102.05862. Our methods unify and strengthen earlier approaches used in arXiv:2401.03724 and arXiv:2102.05862 and to our surprise, also yield a counterexample to a certain pinned variant of the polynomial Bogolyubov theorem. |
---|---|
ISSN: | 2331-8422 |