Cu Embedded in Co–P Nanosheets with Super Wetting Structure for Accelerated Overall Water Splitting under Simulated Industrial Conditions

The development of advanced electrocatalysts with exceptional performance at high current densities is pivotal for reducing electric energy consumption in industrial water splitting for hydrogen production. Herein, a flexible one‐step electrodeposition approach is developed to synthesize superhydrop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2024-09, Vol.14 (35), p.n/a
Hauptverfasser: Deng, Rongrong, Zhang, Qibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of advanced electrocatalysts with exceptional performance at high current densities is pivotal for reducing electric energy consumption in industrial water splitting for hydrogen production. Herein, a flexible one‐step electrodeposition approach is developed to synthesize superhydrophilic 3D flower‐like clusters of Cu–Co–P nanosheets grown in situ on nickel foam (NF). Introducing Cu into Co–P causes strong electron interactions, forming an electronic configuration favorable for the adsorption and desorption of intermediates, which significantly improves the intrinsic catalytic activity. The as‐deposited Cu–Co–P/NF display notable bifunctional catalytic activity with low overpotentials of 259 and 65 mV for the oxygen and hydrogen evolution reactions, respectively, at 10 mA cm−2. Superwetting 3D flower‐like nanostructures are conducive to the penetration of electrolytes and the rapid release of bubbles, enabling the efficient utilization of active sites and the timely release of bubble stress under high current densities. An assembled Cu–Co–P/NF(+, −) electrolyzer achieves an impressive voltage of 1.85 V at 500 mA cm−2 for water splitting and appreciable stability for over 220 h under simulated industrial conditions. This work offers an attractive strategy for regulating superaerophobic Co–P electrocatalysts for industrial water splitting, which can contribute to practical applications. Constructing highly active and durable electrocatalysts is vital for the industrialized application of water electrolysis to low‐voltage green H2 production. The superhydrophilic 3D flower‐like clusters of Cu–Co–P nanosheets with favorable gas–liquid–solid reaction interface and electronic structure are developed using a flexible one‐step electrodeposition strategy, which exhibits excellent overall water‐splitting performance under simulated industrial conditions.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.202401444